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Abstract
The term life sciences refers to the disciplines that
study living organisms and life processes, and in-
clude chemistry, biology, medicine, and a range
of other related disciplines. Research efforts in
life sciences are heavily data-driven, as they pro-
duce and consume vast amounts of scientific data,
much of which is intrinsically relational and graph-
structured.

The volume of data and the complexity of sci-
entific concepts and relations referred to therein
promote the application of advanced knowledge-
driven technologies for managing and interpreting
data, with the ultimate aim to advance scientific
discovery.

In this survey and position paper, we discuss

recent developments and advances in the use of
graph-based technologies in life sciences and set
out a vision for how these technologies will impact
these fields into the future. We focus on three broad
topics: the construction and management of Knowl-
edge Graphs (KGs), the use of KGs and associated
technologies in the discovery of new knowledge, and
the use of KGs in artificial intelligence applications
to support explanations (explainable AI). We select
a few exemplary use cases for each topic, discuss
the challenges and open research questions within
these topics, and conclude with a perspective and
outlook that summarizes the overarching challenges
and their potential solutions as a guide for future
research.
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1 Introduction25

The term life sciences refers to those disciplines that study living organisms and life processes,26

and include chemistry, biology, medicine, and a range of other related areas. Research efforts in27

life sciences are increasingly data-driven, as they produce and consume vast amounts of scientific28

data, much of which is intrinsically relational and graph-structured.29

Much of this data is large-scale, complex, and presents many interrelationships and dependencies,30

thus being well suited to be represented in graph structures. For this reason, graph-based31

technologies are frequently used in the life sciences, and these disciplines have been drivers and32

early adopters of innovative methods and associated technologies.33

In this brief survey and position paper we discuss recent developments and advances in the34

use of graph-based technologies in life sciences, and set out a vision for how these technologies35

will impact these fields in future. We illustrate the contribution in this paper in Figure 1.36

We consider Knowledge Graphs (KGs) and their associated technologies to broadly include37

(i) different forms of graph-based representations, (ii) the logical languages that assign explicit38

semantics to such representations, and their associated automated reasoning technologies, and39

(iii) machine learning approaches that ingest data in graph-based representations and that process40

these graph-based representations to perform some task, e.g., data analytics.41

These different forms of graph-based representations can be further categorized based on the42

type of content represented. We therefore distinguish schema-less and schema-based Knowledge43

Graphs. More specifically, a typical KG contains either or both a schema part (terminologies44

or TBox1) and a data part (facts, assertions, or ABox). The formal semantics of KGs can be45

expressed with the OWL ontology language2.46

1 We introduce a list of key terms relevant to Knowledge Graphs and Life Sciences in Appendix A.
2 Web Ontology Language: https://www.w3.org/OWL/

https://doi.org/10.4230/TGDK.1.1.5
https://www.w3.org/OWL/
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Life Science 
Knowledge 
Discovery
(Sect. 4)

Knowledge Graph 
Construction and 

Management
(Sect. 3)

Knowledge Graph 
for Explainable AI

(Sect. 5)

Challenges for Life Science KGs (Sect. 6)

v Scalability
v Evolution & Quality Assurance
v Heterogeneity: Multi-domain & Multi-

modality
v Human Interaction & Explainability
v Personalized & Customized KGs
v Distributed KGs
v Representation Learning: Symbolic & Sub-

symbolic Integration

§ Alignment for Knowledge Validation
§ Knowledge Integration
§ Repositories of Ontologies and Mappings
§ Ontology Extension
§ Instance Matching

§ Therapeutics and Drug Discovery
§ Protein Function Prediction
§ Predictions for Healthcare

§ Explainable AI for Healthcare Practice
§ Explainable AI for Knowledge Discovery
§ Explainable AI for KG Construction

KG in Life Sciences (Sect. 2)

v Schema-less KGs: Facts in RDF triples
v Schema-based KGs: RDFS, OWL, SHACL, etc.
v Simple ontologies: Taxonomies
v Expressive OWL ontologies

Figure 1 An overview illustration of definitions (upper right, in gray), topics (left column, in blue),
use cases (middle), and challenges (bottom right, in green) for the research of KGs in the life sciences.

In the remainder of this paper we will focus on three broad topic areas in which graph-based47

technologies have been used extensively, and we illustrate each area with some specific projects or48

use cases that guide our discussion and summary of the challenges that have been encountered.49

The construction and management of KGs to represent life science knowledge;50

The use of KGs and associated technologies in the discovery of new knowledge;51

The use of KGs in artificial intelligence applications to support explanations (eXplainable AI52

or XAI).53

We then provide a summary of the general challenges across the topics, that include intrinsic54

characteristics of KGs (e.g., scalability, evolution, heterogeneity) and their operational aspects in55

the real world (e.g., human interaction, personalization, distributed setting, and representation56

learning). We present the challenges by means of use cases and the current research efforts that57

address them. It is worth mentioning that while we aim to focus on the life sciences, many of the58

topics and challenges discussed in this work, especially those of KG construction and management59

in Section 3, are general and applicable to KGs in other domains such as finance, e-commerce,60

material, and urban management [111, 31], etc. The KG-based problem modeling and solving61

approaches in life science knowledge discovery could be applicable for addressing many other use62

cases and problems in a broader domain of AI for scientific discovery [175, 60].63

In the next section, we introduce several different categories of KGs as they have been used in64

life sciences. Thereafter in Sections 3-5, each of the above topics is described in a dedicated section65

together with a survey of recent advances. Finally, in Section 6 we synthesize the overarching66

challenges and trends into a perspective on the outlook for the future.67

2 Knowledge Graphs in the Life Sciences68

KGs represent semantically-described real-world entities, typically through ontologies (vocabularies69

or schemas) [68, 61] and the data instantiating them, and thus provide descriptions of the entities of70

interest and their interrelations, by means of links to ontology classes describing them, organized in71

a graph [158]. KGs have been widely adopted in the life sciences, as can be seen in the composition72

TGDK



5:4 Knowledge Graphs for Life Sciences

of the Linked Open Data Cloud3, where life sciences represent one of the largest subdomains. A73

prominent example is the KG representing annotations regarding proteins by means of terms in74

the Gene Ontology describing different protein functions [4].75

Whilst KGs are becoming increasingly popular in different domains including the life sciences,76

there is no single accepted definition of KG [43]. A KG can be formally described as a directed,77

edge-labeled graph G = (V, E), where V refers to the vertices or nodes, representing real-world78

entities of interest (e.g., proteins, genes, compounds, cellular components, but also pathways,79

biological processes and molecular functions, to name a few) while E refers to the edges in the80

graph, representing relationships or links between the entities in V (e.g., binds, associates, etc.).81

These may be represented as statements about entities in the form of RDF4 triples: (subject,82

predicate, object).83

However, this formal definition only focuses on the components of KGs, but does not pose any84

constraint on what a KG should model or represent, and how. This is particularly true in life85

sciences, where the term Knowledge Graph has been used to refer to diverse graph data structures,86

typically interconnected, but often isolated.87

Many of the everyday tasks faced by researchers in this domain require the systematic processing88

and integration of data and knowledge from data sources that are characterized by heterogeneous89

syntaxes and structures, formats, entity notation, schemas and scope, e.g., ranging from molecular90

mechanisms to phenotypes. Researchers in this area have been early adopters of Semantic Web91

and linked data approaches as a means to facilitate knowledge integration and processing to92

support tasks including semantic search, clinical decision support, enrichment analysis, data93

annotation and integration. However, a recent analysis of life science open data has identified94

several stand-alone data sources that exist in isolation, are not interlinked with other sources,95

and are schema-less (or use unpublished schemas), with limited reuse or mappings to other data96

sources [88]. Therefore, we can define a life sciences KG, following [130], as a data resource97

integrating one or more possibly curated sources of information into a graph whose nodes represent98

entities and edges represent relationships between two entities. This definition is consistent with99

other definitions found in the literature, e.g., [135].100

These considerations underlie the reasons why KGs in life sciences can be of different types,101

and can be categorized across different dimensions. One of the most critical dimensions (in terms102

of support for complex queries and integration) is the categorization of KGs into schema-based103

and schema-less knowledge bases. In turn, the expressivity of the schema provides a further104

categorization criterion, depending on whether schemas are modeled as simple taxonomies (e.g.,105

the NCBI taxonomy [154] included in the UMLS Metathesaurus [9]), RDFS5 vocabularies or (fully106

axiomatized) OWL ontologies. In particular, this paper refers to this broad definition of KGs,107

which we then divide into:108

Schema-less KGs composed of only relational facts in the form of RDF triples. Examples109

include the PharmaGKB dataset, an integrated online knowledge resource capturing how110

genetic variation contributes to variation in drug response [180]. Note that many semantic111

networks (defined in Appendix A) could be assigned to this category as their triples form a112

multi-relational graph.113

Schema-based KGs composed of relational facts and their schema (meta information) in e.g.,114

RDFS, OWL, and constraint languages such as SHACL6. Examples include Wikidata with its115

3 http://cas.lod-cloud.net
4 Resource Description Framework: https://www.w3.org/RDF/
5 RDF Schema: https://www.w3.org/TR/rdf-schema/
6 https://www.w3.org/TR/shacl/

http://cas.lod-cloud.net
https://www.w3.org/RDF/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/shacl/
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property constraints, and DBpedia with its DBpedia ontology. Whilst Wikidata and DBpedia116

are general-purpose KGs, they also include large-scale life science knowledge.117

Simple ontologies representing taxonomies. Notable examples include the tree structure of the118

UMLS Semantic Network7 and the International Classification of Diseases, version 10 (ICD-10)119

[182].120

Expressive OWL ontologies, with complex axioms beyond simple taxonomies. OWL ontologies121

may be composed of a TBox and an ABox. Depending on the expressivity of the axioms122

modeled in the ontology, i.e., the basic statements that an OWL ontology expresses, OWL123

ontologies can fall into one of the previous categories: for instance, an OWL ontology with124

just an ABox can be seen as the case above of a KG composed of relational facts alone. In125

this final category we include fully axiomatized OWL ontologies, e.g., with complex classes126

and property restrictions. Notable examples of these ontologies include SNOMED CT [38],127

the Gene Ontology [4, 28], and the Food Ontology (FoodOn)8.128

3 Knowledge Graph Construction and Management129

The adoption of KGs in the life sciences is motivated by the need for standardization of taxonomies130

and vocabularies to support the integration, exchange and analysis of data. More recently, richly131

annotated data is also being used in combination with machine learning methods for many132

applications, including helping to overcome issues related to the sparsity of data and helping to133

select promising candidates for reducing expensive and time-consuming physical experiments [64].134

Graph-based machine learning approaches such as Graph Neural Networks have been applied to a135

number of life science tasks [49], including drug repurposing [120] and predicting polypharmacy136

side effects [196].137

Given the diverse nature of the knowledge and tasks supported by KGs, the focus of state-138

of-the-art approaches has been the description of how individual KGs are developed within the139

specific domain [190], typically in terms of the specific approaches used for the development of the140

KG (e.g., data extraction process, relation extraction and entity discovery), rather than on the141

overall development process. More recently, some efforts have focused on providing an overview142

of development approaches and pipelines for the construction of KGs in the life sciences, and143

beyond [130, 164]. The process of constructing a KG depends heavily on:144

The type of data sources integrated and annotated by the KG, e.g., CSV files, public and145

proprietary data sources, structured databases, full-text publications, etc.146

The granularity of the KG to be constructed, e.g., schema-less KG, simple or expressive147

ontology.148

The usability expectations in downstream applications, e.g., the ability to customize and149

manipulate the graph to support different use cases, or the ease of consumption as input to150

machine learning methods [51].151

A recent systematic review [164] surveyed different KG development approaches to determine152

a general development framework. The review identified six main phases that are common across153

different KG development approaches:154

1) Data source selection.155

2) Ontology construction.156

7 https://uts.nlm.nih.gov/uts/umls/semantic-network/root
8 http://foodon.org

TGDK
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5:6 Knowledge Graphs for Life Sciences

3) Knowledge extraction.157

4) Knowledge ingestion and validation.158

5) KG storage and inspection.159

6) KG maintenance and evolution.160

In the remainder of this section we will present the individual phases and the role they play161

in a KG development process by means of two use cases, where we illustrate the construction162

of KGs and discuss how these support knowledge integration and validation (Section 3.2). We163

then present some recent technical developments in Section 3.3, while Section 3.4 discusses open164

challenges for the construction and management of KGs.165

3.1 Knowledge Graph Construction Phases166

This section provides more details on the phases involved in the KG construction process, with167

the aim of identifying recent trends, rather than providing an exhaustive literature survey. These168

phases are discussed in order of execution, however the ontology construction phase can occur either169

together with the data source selection (if an ontology covering the domain of interest already170

exists or can be constructed through a set of given requirements) or as part of the knowledge171

ingestion and validation phase, where an ontology is built semi-automatically from the available172

data or through modularization and alignment of existing ontologies.173

3.1.1 Data source selection174

This phase identifies the data sources that are to be integrated by the KG, which in turn affects175

the choice of knowledge extraction techniques. Generally, life science KGs ingest knowledge176

from structured, semi-structured and unstructured data sources. By structured we refer to data177

modeled according to an existing structure, e.g., data in tables or public or proprietary reference178

(relational) databases such as UniProt [29] or ChEMBL [50]. Semi-structured data refer to, e.g.,179

XML documents [116], whereas unstructured data refer to data that do not conform to a given180

structure, i.e., free-text sources, such as scientific publications from PubMed9. Data ingested181

from manually curated databases [130] and semi-structured sources constitute the foundation of a182

KG [51], generally defining the entities and some of the relations in the KG. This data is then183

further enriched by performing text mining on large-scale free text sources, in order to extract184

relationships, which is the objective of the knowledge extraction phase.185

3.1.2 Ontology construction186

The aim of this phase is to define a common, consensus-based, controlled vocabulary to describe187

the data in an ontology [146]. The existence of a common structure, or schema, supports querying,188

integration and reasoning tasks over the KG.189

Traditional ontology engineering approaches are divided into top-down or bottom-up. Top-190

down approaches are based on more or less formal ontology engineering methodologies [45, 95, 131]191

or common practices [3] to build ontologies from a description of the domain elicited from domain192

experts [129], and/or by reusing or extending existing ontologies [82]. Ontology engineering193

methodologies define the ontology development process in terms of requirement analysis, entity194

and property definitions, ontology reuse, validation and population. In contrast, bottom-up195

approaches utilize semi-automatic data driven techniques, e.g., ontology learning from text [110],196

9 https://pubmed.ncbi.nlm.nih.gov

https://pubmed.ncbi.nlm.nih.gov


Chen, Dong, Hastings, Jiménez-Ruiz, López, Monnin, Pesquita, Škoda, Tamma 5:7

and can be used to refine and validate an ontology. These approaches are discussed in more detail197

when presenting the knowledge ingestion and validation phase.198

Whilst general purpose ontology engineering methodologies have evolved to be used in the199

development of KGs [139], a considerable number of ontologies in the life science domain have been200

built as part of the Open Biological and Biomedical Ontologies (OBO) Foundry effort,10 which201

defines a set of development principles for biological and biomedical ontologies and provides a suite202

of high-quality, interoperable, free and open source tools that support ontology development [115].203

3.1.3 Knowledge extraction204

Knowledge extraction refers to the identification of entities and their relations from the data sources,205

which is a crucial step in the development of a KG [164]. Entity extraction identifies entities from206

the various data sources selected using Natural Language Processing (NLP) approaches and text207

mining techniques to analyze and extract relevant information from large text corpora [178, 103, 71].208

Named entity recognition (NER) supports the identification of named entities in text, such as drug209

names, diseases, or chemical compounds, and their classification according to pre-defined entity210

types [127]. NER approaches in the life sciences are typically based on labor intensive tasks such211

as the definition of generic (e.g., orthographic, morphological, or dictionary-based) and specific212

rules that are typically defined by experts, and are not easily applicable to other corpora [195].213

There are a number of issues hindering these approaches: a) the pace of scientific discovery and214

the identification of new entities; b) the large number of synonyms and term variations associated215

with an entity; and c) entity identifiers that are composed of a mixture of letters, symbols and216

punctuation, often in large sentences [101]. More recent approaches have proposed the use of217

supervised machine learning methods (e.g., conditional random fields, or Support Vector Machines,218

SVMs, neural networks, and neural language models in particular) [112, 86, 35] either in isolation,219

or combined in hybrid approaches to improve accuracy [149].220

Entity recognition generates entities that are isolated and not linked [164]. The goal of Relation221

extraction is to discover relationships of interest between a pair of entities, thus describing their222

interaction. Relation extraction is a necessary step for entities defined in semi-structured or223

unstructured sources, whereas structured data sources are characterized by explicitly identifiable224

relationships. Typical approaches for relation extraction include rule-based [75, 145, 144], super-225

vised [106, 48] and unsupervised approaches [98, 130]. Rule-based relation extraction identifies226

keywords (based on existing ontologies or expert defined dictionaries) and grammatical patterns227

to discover relations between entities. Supervised relationship extraction methods utilize publicly228

available pre-labelled datasets (e.g., BioInfer [141] or BioCreative II [97]) to construct generalized229

patterns that separate positive examples (sentences implying the existence of a relationship) from230

negative ones. Supervised approaches include SVMs, Recurrent Neural Networks (RNNs) and231

Convolutional Neural Networks (CNNs) [6, 130]. Unsupervised relation extraction methods [113]232

have emerged to address the lack of scalability of supervised relation extraction methods, due233

to the high cost of human annotation. Unsupervised methods involve some form of clustering or234

statistical computation to detect the co-occurrence of two entities in the same text [130].235

More recently, end-to-end approaches (End-to-End Relation Extraction – RE) have been used236

to tackle both tasks simultaneously. In this scenario, a model is trained simultaneously on both237

the NER and Relation Extraction objectives [74]. Furthermore, rule-based approaches can be238

combined with relation classification using specialized pre-trained language models adapted for239

life science domains, e.g., BioBERT [102], SapBERT [108], and RoBERTa-PM [104], to name a240

10 https://obofoundry.org

TGDK

https://obofoundry.org


5:8 Knowledge Graphs for Life Sciences

few. There is also a recent trend to probe and prompt pre-trained language models to extract241

relations (e.g., disease-to-disease, disease-to-symptoms) [187, 163].242

3.1.4 Knowledge ingestion and validation243

The aim of this phase is to ingest the entities and relationships extracted in a previous phase, which244

models knowledge from different sources. These entities and relations can be incomplete, ambiguous245

or redundant, and need to be appropriately aligned and integrated, and finally annotated according246

to the ontology constructed in phase 2.247

Knowledge integration or fusion can critically improve the quality of data by performing entity248

resolution, i.e., the detection of different descriptions of the same real-world entity (also called249

entity matching, deduplication, entity linkage or entity canonicalization), prior to ingesting them250

in the KG. This reconciliation step is particularly crucial in the life sciences, where duplication can251

be caused by data modeled using different vocabularies or ontologies, or when data is extracted252

from literature sources that are rapidly changing. The severity of the ambiguity depends on the253

number of ontologies available for the domain. For instance, the number of gene vocabularies is254

far smaller than the number of disease vocabularies that could be present in the ingested datasets.255

Linking these entities requires costly alignment processing; in particular the alignment of disease256

entities is especially problematic given the number of different coding systems, whose conversion is257

often not trivial [51]. We further explore this issue in two of the use cases presented in Section 3.3,258

where we explore the problem of aligning vocabularies and ontologies through the use of mapping259

repositories and instance matching in automated clinical coding.260

Entities are assigned unique identifiers (URI or IRI) that support the definition of bespoke261

namespaces, and support integration by reusing identifiers in related namespaces. Entity resolution262

is based on clustering similar entities together in a block, where similarity measures are used to263

detect duplicates [164]. Typical methods include sorted neighborhoods and traditional blocking;264

and machine learning methods are commonly used for similarity computation, e.g., feature vector265

computation [93].266

This phase may also include the bottom-up construction of the ontology for those applications267

where a top-down approach is not feasible. Bottom-up approaches extract the relevant knowledge268

first, and then they construct the data schema / ontology based on the extracted data, typically269

using (semi-)automated methods, based on machine learning. Ontologies define the structure270

of the knowledge graph, which supports querying and data analytics. In bottom-up ontology271

development the structure of the knowledge graph is determined based on the extracted knowledge,272

thus providing a structure for this knowledge [69].273

Often the construction of ontologies (either bottom-up or top-down) relies on the ability to274

correctly align and reuse entities defined across different domains and KGs. Furthermore, reuse of275

(or conformance to) existing upper level ontologies, e.g., BFO (Basic Formal Ontology) [3] provides276

the basis for the consistent and unambiguous formal definition of entities and relations that277

prevents errors in coding and annotation. The alignment of ontologies in life sciences and other278

domains is an active area of research, and we provide an overview of recent technical developments279

and challenges in Section 3.3.280

Whilst bottom-up approaches, especially those based on alignment, are becoming more viable,281

especially given the support of language models, such as BERT [63], their performance is not282

always adequate for the task, as discussed in the second challenge in Section 3.4.283

Knowledge enrichment and completion improve the KG quality by performing reasoning284

(KG materialization), inference [56] and optimization. Reasoning and inference support the285

assertion of new relations based either on logical reasoning (e.g., [128, 170]) or machine learning286

techniques (e.g., statistical relational learning or through embedding based link predictors for new287
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concepts [34, 35, 66, 76] and node classifiers, also called KG refinement [135]). The extent and type288

of logical inferences depends on the expressivity of the ontology built in phase 2, or in a bottom-up289

fashion in this phase, together with any associated mappings. Description Logic formalisms, such290

as OWL, use logic-based reasoning for detecting and correcting incorrect assertions and ontology291

alignments [24].292

3.1.5 KG storage and inspection293

KGs need to be accessible to support a variety of different tasks, beyond the mere integration of294

different knowledge sources, and thus KG storage management [164, 142, 177] is an active area of295

research. Current KG storage mechanisms are divided into relation based stores (e.g., [1]) and296

native graph stores (e.g., [197]). Relational KG stores, either based on relational databases or297

through NOSQL databases and / or triple stores such as Jena TDB11, have reached a considerable298

level of maturity and have been optimized in order to avoid common problems, e.g., a large number299

of null values in columns or optimized query performance [142]. Graph databases store nodes,300

edges and properties of graphs natively, and support query and graph mining tasks. Examples301

of state of the art implementations include Neo4J12, GraphDB13, and RDFox14. The evolution302

of the performance of these systems has been the object of systematic studies [8], whereas [168]303

explicitly focuses on biomedical use cases.304

Storage management has implications on the ways KGs support expressive queries for nodes and305

edges and visualization, to support data analysis, navigation and discovery of related knowledge [93,306

162]. Graph databases often provide built-in tools for visualization, e.g., Neo4J, whereas different307

Javascript libraries (e.g., SigmaJS15) are available for developing visualization front ends. Support308

for complex queries is also either built in a graph database or a triple store by supporting the309

SPARQL query language [140, 197], or proprietary query languages such as Cypher [47], supported310

by Neo4J.311

3.1.6 Knowledge maintenance and evolution312

Given the rapid scientific development in the life sciences, and the consequent continuous update313

of ontologies for this domain, artifacts annotated with these ontologies can become outdated314

very quickly, and require some form of update (also called ontology extension). These update315

mechanisms need to be automated to ensure that they scale to the size of KGs. Automatic update316

approaches are based on the periodical detection and extraction of new knowledge that is then317

mapped to existing entities and relations in the KG [183].318

Update mechanisms are typically based on the detection of changes [121] that can affect an319

ontology, e.g., addition, removal or modification of meta-entities (i.e., entities, relations and their320

definitions). These changes include renaming concepts and properties, setting domain and range321

restrictions, or setting a subsumption relation. To date, the most comprehensive account of322

ontology change is given in [46], where change is described for different sub-fields, e.g., ontology323

alignment, matching and mapping, morphisms, articulation, translation, evolution, debugging,324

versioning, integration and merging; each with different requirements and implications. The study325

[137] further investigates the impact of biomedical ontology evolution on materialization.326

11 https://jena.apache.org/documentation/tdb/index.html
12 https://neo4j.com
13 https://graphdb.ontotext.com
14 https://www.oxfordsemantic.tech/product
15 https://github.com/jacomyal/sigma.js
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Currently available tools and methodologies use (semi)-automated methods to perform many327

of the operations that trigger a change in an ontology and the consequent creation of a new328

version [54, 63]. Different ontology management platforms and portals mandate different principles329

and frameworks for handling ontology versioning (e.g., OBO foundry16 or BioPortal17), but these330

are typically implemented by ontology developers with limited tool support. Section 3.3 presents331

an example of automated ontology extension that relies on machine learning to cope with the332

scale of data.333

3.2 Examples of Life Science KG Construction334

In this section we provide two examples of life science KGs that illustrate in practice the335

phases composing the generic KG construction process discussed in Section 3; namely a KG for336

Pharmacogenomics, PGxLOD [118], and one for Ecotoxicological Analysis, TERA [124, 125].337

Alignment for Knowledge Validation: An Example of Pharmacogenomics. As mentioned338

in Section 3, the task of aligning knowledge in KGs supports several downstream applications339

and domains. For instance, pharmacogenomics studies the influence of genetic factors on drug340

response phenotypes (e.g., expected effect, side effect). Hence, pharmacogenomics is of interest for341

personalized medicine. The atomic knowledge unit in pharmacogenomics is a ternary relationship342

between a drug, a genetic factor, and a phenotype. Such a relationship states that a patient343

being treated with the specified drug while having the specified genetic factor may experience the344

described phenotype. Semantic Web and KG technologies have been employed in this application345

domain, for example by building ontologies in which patients and pharmacogenomic knowledge are346

represented, and then using deductive reasoning mechanisms to conditionally recommend genetic347

testing before drug prescription [153]. However, the knowledge relevant to pharmacogenomics348

is scattered across several sources including reference databases such as PharmGKB, and the349

biomedical literature. Additionally, this knowledge may lack sufficient validation to be implemented350

in clinical practice. For example, some relationships may have only been observed in smaller351

cohorts of patients or in non-replicated studies. Hence, there is a need to align different sources of352

pharmacogenomic knowledge to detect additional evidence validating (or moderating) a knowledge353

unit. To this aim, the PGxLOD KG was proposed [118]. Automatic knowledge extraction354

approaches were applied on semi-structured and unstructured data from PharmGKB and the355

biomedical literature to represent their knowledge in the KG. Then, matching approaches were356

developed to align knowledge units from various sources [117, 119]. The resulting alignments357

outlined some agreements between PharmGKB and the biomedical literature, which was expected358

since PharmGKB is manually completed by experts after reviewing the literature. Interestingly, this359

automatic knowledge extraction pipeline could guide the manual review process by automatically360

pointing out studies confirming or mentioning a pharmacogenomic knowledge unit.361

Knowledge Integration: An Example of Ecotoxicological Analysis. In ecotoxicological362

analysis, data and knowledge from different domains such as chemistry and biology are often363

needed. These are usually located in different sources such as spreadsheets or CSV files for364

local experimental results, open databases for public research results, and ontologies for domain365

knowledge. Thus knowledge integration becomes a critical and fundamental challenge before366

real analysis can be conducted. In the study by Myklebust et al. [124, 125], which aims to367

predict adverse biological effects of chemicals on species, a toxicological effect and risk assessment368

16 http://www.obofoundry.org/principles/fp-004-versioning.html
17 https://bioportal.bioontology.org

http://www.obofoundry.org/principles/fp-004-versioning.html
https://bioportal.bioontology.org
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KG named TERA was constructed for knowledge integration. TERA includes three sub-KGs:369

(i) the Chemical sub-KG, which is constructed by integrating the vocabulary MeSH (Medical370

Subject Headings) with selective knowledge from two chemical databases PubChem and ChEMBL371

utilizing the chemical mappings in Wikidata; (ii) the Taxonomy sub-KG, which is constructed by372

integrating EOL (Environment Ontology for Livestock) and the NCBITaxon ontology utilizing373

NIBI-EOL mappings in Wikidata; and (iii) the ECOTOX sub-KG, which is composed of RDF374

triples transformed from experimental risk results and is aligned with the other two sub-KGs by375

the ontology alignment system LogMap [80] and the chemical mappings in Wikidata. Another376

example of knowledge integration is for drug repurposing, where the KG Hetionet18 is created by377

integrating 29 public resources, including biomedical KGs and other types of data [67].378

3.3 What has been done: recent technical developments379

Given the many existing ontologies in life sciences, e.g., ontologies available in the OBO Foundry380

collection or in BioPortal [132], KG construction usually involves the reuse, alignment, and381

enrichment of state-of-the-art ontologies. The existing ontologies in life sciences need to be382

updated given the new discoveries in the field. This is broadly a key issue in the management,383

maintenance, and evolution of ontologies. We select a few promising use cases below to highlight384

some recent developments that support the KG construction in the life sciences.385

Repositories of Ontologies and Mappings. Ontologies and their mappings play a central386

role in semantically enabled products and services consumed by life science companies, academic387

institutions and universities, as highlighted by the Pistoia Alliance ontology mapping project [58].19
388

Ontology mappings are essential in knowledge graph construction tasks to bridge the knowledge389

provided by different ontologies and expand their coverage. Ontology mappings can also play a key390

role when identifying the right ontologies to be reused as they will enable the retrieval of the relevant391

(overlapping) ontologies for the domain of interest. For this reason, a number of notable efforts in392

life sciences have created large repositories of ontologies and mappings to serve the research within393

the community. Prominent examples include the UMLS Metathesaurus [9], BioPortal [132, 152],394

MONDO [172], and the EBI services: OLS [174], OxO [84] and the RDF platform [85]. The UMLS395

Metathesaurus is a comprehensive effort for integrating biomedical ontologies through mappings.396

In its 2023AA version, it integrates more than two hundred vocabularies, with more than 3 million397

unique concepts and more than 15 million concept names. BioPortal is a repository containing398

more than 1,000 biomedical ontologies and more than 79 million lexically computed mappings399

among them (as of July 13, 2023). The Mondo Disease Ontology (MONDO) is a manually curated400

effort to harmonize and integrate disease conceptualizations and definitions across state-of-the-art401

ontologies (e.g., HPO [96], DO [155], ICD, SNOMED CT, etc.). The services provided by the402

European Bioinformatics Institute (EBI) also deserve a special mention. The Ontology Lookup403

Service (OLS) has become a reference to explore the latest versions of more than two hundred404

ontologies via its graphical interface or programmatically via its API. OxO is a repository of405

ontology mappings and cross-references extracted from the OLS and UMLS. OxO allows users to406

visually traverse the graph of mappings to identify additional potential mappings beyond direct407

ones (i.e., multi-hop mappings). Finally, the EBI RDF platform provides a unified KG with all408

the RDF resources at the EBI. Complementary to the efforts from the life sciences, the Semantic409

Web has also contributed to the systematic evaluation of mappings in public repositories (e.g.,410

[81, 44]) and mappings produced by automated ontology mapping systems (e.g., the Ontology411

18 https://github.com/hetio/hetionet
19 https://www.pistoiaalliance.org/projects/current-projects/ontologies-mapping/
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Alignment Evaluation Initiative (OAEI) [138]). Automatically generated mappings of high quality412

have the potential to be integrated within the aforementioned repositories and hence, the OAEI413

has always had a special focus on life science test cases with evaluation tracks like Anatomy [39],414

LargeBio [83], Phenotype [59] and the newly created track BioML [64]. The Simple Standard for415

Sharing Ontological Mappings (SSSOM) [114] represents a joint effort between the life sciences416

and Semantic Web communities to facilitate the exchange of mappings across different parties417

and repositories, while keeping the provenance and other relevant characteristics of the mappings.418

Ontology Extension. Ontology extension in life sciences aims to connect new concepts and their419

relations to an ontology from updated sources, e.g., scientific papers in PubMed and chemical420

information in PubChem20. Manual ontology extension, while essential for the development of421

gold standard resources, is not scalable to the full scope of large domains due to its high cost and422

low efficiency, and sometimes is even unfeasible as human beings may not be able to review the423

quantities of new information at the rate they become available. Thus machine-learning-based,424

automated methods are needed. One recent example is the use of deep learning, specifically425

a Transformer-based model, to categorize new chemical entities within the ChEBI ontology21
426

[53]. In addition, recent studies have explored enriching SNOMED CT by mining new concepts427

from texts [35] and placing them into the ontology [109, 34]. A new concept can be identified428

by NIL entity linking, i.e., exploring unlinkable mentions, usually through setting a “linkable”429

score threshold or through classification [35]. Resolution and disambiguation of NIL mentions430

with clustering can help to represent NIL entities [66, 91]. For concept placement, similar to431

the aforementioned CHEBI ontology extension [53], machine learning, especially in the form of432

Transformer-based deep learning, has been applied to predict subsumption relations between433

a new concept and the existing concepts. Complex concepts in OWL ontologies that contain434

logical operators (e.g., existential quantifier and conjunction in SNOMED CT) can be supported435

in subsumption prediction [23] and new concept placement [34]. Another group of studies use436

post-coordination or formalising a new term with existing concepts and attributes [16, 92], which437

is similar to composing subsumption axioms with complex concepts. The methods include using438

lexical features [92], word embeddings and KG embeddings [16]. Pre-trained and Large Language439

Models, through fine-tuning, zero-shot and few-shot prompting have the potential to support the440

mining [35] and placement of new concepts (e.g., by subsumption prediction [23, 65]).441

Instance Matching: Automated Clinical Coding. A main source for patients’ KG construc-442

tion is Electronic Health Records (EHR). Using medical ontologies as backbones, it is possible to443

add a layer of data by instance matching (or patient matching) through Clinical Coding. Clinical444

coding is the task of transforming medical information in EHR into structured codes described in445

medical ontologies [36], e.g., ICD and SNOMED CT. Recent approaches mainly formulate the446

problem as a multi-label classification problem. Various neural network architectures have been447

proposed and knowledge plays a key role to enhance the neural architectures [36, 79]. Pre-trained448

language models, e.g., BERT [32], have been applied to clinical coding and gradually achieved449

better results with adapted modeling methods and more advanced language models, e.g., PLM-ICD450

[70] with RoBERTa-PM [104], according to studies [36, 42, 78]. Other studies formulate the task451

as a Named Entity Recognition and Linking (NER+L) problem, by extraction of concepts and452

linking them with the ontologies [36]. Overall, the recent progress in clinical coding, along with453

the advent of Large Language Models (LLMs) suggests a trend in this area for patients’ KG454

construction from EHR. However, there is still room for improvement in knowledge integration to455

20 https://pubchem.ncbi.nlm.nih.gov/
21 https://www.ebi.ac.uk/chebi/

https://pubchem.ncbi.nlm.nih.gov/
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better address explainability (see Section 5 for more details) and in zero-shot learning problems,456

i.e., for classifying into rare codes or concepts [36, 42, 79]. There are also further recent examples457

of instance matching with EHR data, including the works [15, 166].458

3.4 What are the challenges?459

KG construction and management often play a fundamental role in supporting life sciences with460

computation. There are still quite a few technical challenges, and many of the current tools and461

algorithms can be improved by modern machine learning and AI techniques. Here we present462

some critical and fundamental technical challenges.463

How to construct a customized KG? For a specific application, we often need to extract464

relevant data and knowledge from multiple sources, and at the same time integrate extracted465

knowledge from different sources. Considering a case study of personal health assistance, a466

customized KG with knowledge of at least exercise (sports), food, disease and medicine are467

required, while fine-grained knowledge of these aspects will lie in different domain KGs. The key468

challenge for integrating different ontology modules lies in estimating the semantic similarity and469

discovering the equivalence of two knowledge elements with their contexts considered, as well as470

the subsequent refinement like KG completion and knowledge representation canonicalization.471

Adequate tool support to minimize manual curation but enabling the user involvement when472

required is also paramount (e.g., [105]).473

How to ensure adequate performance using machine learning based approaches for474

automated KG construction? At the TBox level, the state-of-the-art alignment between475

classes (especially for subsumption relations) seems to not yet be achieving good enough476

performance, as reflected in recent biomedical ontology alignment benchmarking [64]. At the477

ABox level, predicting missing facts for practical KG construction expects high precision (e.g.,478

beyond 90% or 95%) but only a few relations can be populated with a precision above 80%479

using prompt learning with BERT as evaluated in [173]. This is also the case to associate480

patients’ EHR (as a part of ABox) with clinical codes or concepts in medical ontologies, where481

a micro F1 score is below 60% [36]. Learning subsymbolic representations (see defined in482

Appendix A) of KG and data sources may help address the challenge. Transformer-based483

language models have achieved great performance in recent years. Among them, pre-trained484

language models such as BERT have been applied for KG construction with a promising485

performance achieved (see e.g., the package DeepOnto [63]), while the more recent and more486

powerful generative language models like GPT series [13] have not been well applied at the487

time of writing, especially in the life science domain.488

How to ensure reliable semi-automated deep learning-based KG construction with489

human interaction? Many tasks in the KG life cycle unavoidably rely on human experts to490

achieve consensus on reliable knowledge; on the other hand, as the automated KG construction491

process is growing opaque with deep learning methods, it is important to ensure trustworthiness492

and reliability [191]. Apart from enhancing performance metrics with novel methods, results493

with certain explainability are needed, for example, highlighting key parts in the data input494

when they are used as sources for KG construction. We discuss other aspects of explainability495

with KG, on life science knowledge discovery and healthcare decision making, in Section 5.496

Human-in-the-loop learning design for explainable KG construction may ensure the use of497

experts’ knowledge for the task across the KG life cycle, which still remains a challenge for498

future research [191].499
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4 Life Science Knowledge Discovery500

Research into AI technologies – including machine learning and KG-based reasoning – to accelerate501

the pace of scientific discovery is an emerging and rapidly developing field. The challenge lies in502

assisting scientists to uncover new knowledge and solutions, such as discovering novel therapeutic503

opportunities, identifying candidate molecular drugs to treat complex diseases or alternatively504

new uses for existing drugs, and supporting more personalized predictions.505

Knowledge Graphs are powerful tools for representing complex biomedical knowledge, including506

molecular interactions, signaling pathways, disease co-morbidities, and more. Overviews of graph507

representation learning in biomedicine for healthcare applications and polypharmacy tasks are508

presented in [107] and [52] respectively. In graph representation learning, the graph’s topology509

is leveraged to create compact vector embeddings. Through nonlinear transformations, high-510

dimensional information about a node’s graph neighborhood is distilled into low-dimensional511

vectors, where similar nodes are embedded close together in the vectorial space. Embeddings have512

been shown to be valuable for handling numerous relations in a KG while efficiently exploiting513

relation sparsity using vector computations. These optimized representations are subsequently514

used to train downstream models for various tasks, such as predicting property values of specific515

nodes (e.g., protein function), predicting links between nodes (e.g., binding affinity between516

molecules and protein targets), or performing classification tasks (e.g., predicting the toxicity517

profile of a candidate drug, or risk of readmission for a patient).518

It is worth mentioning that among the existing works for life science knowledge discovery,519

different kinds of KGs have been exploited. The schema-less KG can be used to model different520

kinds of interaction between instances such as proteins and drugs; the taxonomy alike simple521

ontology is often used to represent concepts and their hierarchy such as protein functions defined522

in the gene ontology, chemical compounds, species, and diseases; expressive OWL ontologies523

and schema-based KGs can be used to model complex logical relationships between concepts,524

besides simple interaction between instances. Such diverse knowledge representation capabilities525

make KGs more flexible in modeling the input data and prediction targets of different knowledge526

discovery tasks, than graphs and tabular data that are widely used in previous pure machine527

learning-based methods.528

In the following, we present some typical use cases, where machine learning techniques (including529

graph representation learning and language models) are applied over KGs built from diverse530

sources and domain ontologies, to facilitate life science discovery.531

4.1 What has been done: use cases and their recent developments532

Therapeutics and Drug Discovery: Learning a representation using multi-modal533

and heterogeneous knowledge. Drug discovery entails exploring an extremely large space534

of potential drug candidates. AI can help to accelerate this process by narrowing down the535

most promising candidates before expensive experimentation. The key to leveraging predictive536

and generative models for candidate solution generation lies in learning an effective multi-modal537

representation of protein targets, molecules and diseases among others. Recent research has focused538

on applying language models over large databases of proteins or molecules for self-supervised539

representation learning, such as ESM [148] and ProteinBERT [10] for protein sequences, or540

Molformer for the molecule simplified molecular-input line-entry system (SMILES) [151]. These541

models have exhibited remarkable success in tasks such as predicting protein interactions, binding542

affinity between drugs and targets, and protein functions and structures. However, these existing543

pre-trained sequence-based models often neglect to incorporate background knowledge from diverse544

sources, for example, biological structural knowledge.545
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Nonetheless, recent research indicates that incorporating existing expressive factual knowledge546

can improve results in downstream machine learning tasks. To enhance Protein Language Models547

(PLM), approaches such as OntoProtein [192] and KeAP [194] use a KG of protein sequences548

augmented with textual annotations from the Gene Ontology (GO). OntoProtein was the first to549

inject gene ontology descriptions into a PLM for sequences to predict protein interactions, function550

and contact prediction. OntoProtein proposes to reconstruct masked amino acids while minimizing551

the embedding distance between the contextual representation of proteins and associated knowledge552

terms. Similarly, ProtST [186] uses a dataset of protein sequences augmented with textual property553

descriptions from biomedical texts and jointly trains a PLM with a biomedical language model.554

Knowledge Graphs are suitable data models for expressing heterogeneous knowledge and555

facilitating end-to-end learning [181]. An entity in a KG can have multiple attributes with different556

modalities - where each modality provides extra information about the entity - as well as relations557

to and from entities in other sources. Graph Neural Networks (GNN) have been used to capture558

inter-dependencies and diverse types of interactions between heterogeneous entity types and559

multimodal attributes in KGs [100]. They achieve this by iteratively aggregating information from560

neighboring nodes (through a process called message passing) and employing scoring functions to561

optimize the learned embeddings for downstream tasks. Otter-Knowledge [100] incorporates a562

heterogeneous KG (schema-based, containing concepts and their attributes) from diverse sources563

and modalities, i.e., each node has a particular mode that qualifies its type (text, image, protein564

sequence, molecule, etc.) and initial embeddings for each node are computed based on their565

modality. A GNN is then used to enrich protein and molecule representations and train a model566

to produce final node embeddings. The model is able to produce representations for entities567

that were not seen during training and achieve state-of-the-art results in the Therapeutic Data568

Commons (TDC) benchmarks [73] for drug-target binding affinity prediction. TxGNN [72] uses569

a GNN pre-trained on a large heterogeneous, multi-relational KG of diseases and therapeutic570

candidates constructed from various knowledge bases. TxGNN obtains a signature vector for each571

disease based on its neighboring proteins, exposure and other biomedical entities to compute a572

disease similarity and predict drug indication/contraindication for poorly characterized diseases.573

Protein Function Prediction with the Gene Ontology. Conducting physical experiments for574

identifying protein functions is time and resource consuming. With the development of machine575

learning, protein function prediction (which is the task of predicting a given protein with multiple576

and potentially hierarchical classes – functions – defined in GO) has been widely investigated in577

recent years [193, 171]. A large part of these works such as GOLabler [189] focus on exploring578

feature extraction, feature ensemble, and automatic feature learning of the proteins. For example,579

GOLabler [189] utilizes five kinds of different protein sequence information while DeepGraphGO580

[188] builds a network of proteins and learns protein features via a Graph Neural Network. Recent581

methods attempt to further exploit inter-function (class) relationships that are defined in GO for582

better performance. For example, DeepGOZero [99] and HMI [185] use formal semantics including583

the class hierarchy, class disjointness axioms and complex class restrictions in OWL as additional584

constraints for training the multi-label classifier for protein function prediction. Protein function585

prediction is a representative multi-label classification problem where complex relationships of the586

labels are defined in a KG and can be used for performance augmentation. It is quite common in587

machine learning applications in the life sciences, such as the above mentioned automated clinical588

coding where the codes’ semantics are modeled by the ICD ontology, and ecotoxicological effect589

prediction where the multiple affected species of a chemical to predict form a taxonomy.590

Predictions for Healthcare using Ontologies with Clinical Data. Digital Healthcare591

involves predictions using clinical data and ontologies, including diagnosis (e.g., rare diseases)592

and procedure predictions (e.g., ICU readmissions). A related concept is personalized medicine,593
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which is achieved through the matching and fusion of knowledge from diverse sources, and plays594

a significant role in the prediction tasks. This often involves matching multiple ontologies [156],595

integrating curated databases (e.g., pharmacogenomics, molecules and proteins knowledge bases),596

mining knowledge from scientific literature [184] and person-centered clinical knowledge extracted597

from EHR or claim data, with distinguishing risk factors or cohorts’ demographics (e.g., age598

and gender), which could enhance predictions related to adverse effects [123] or rare diseases599

for which there are not enough labeled datasets [2]. For example, SHEPHERD [2] incorporates600

a multi-relational KG (extracted from PrimeKG [19]) of diseases, phenotypes and genes, and601

leverages patient simulated data to discover novel connections between patients’ clinical, phenotype602

and gene information to accelerate the diagnoses of rare diseases. Knowledge-guided learning is603

achieved by training a GNN to represent each patient’s subgraphs of phenotypes in relation to604

other gene, phenotype, and disease associations within the KG, such that embeddings are informed605

by all of the existing biomedical knowledge captured in the network topology.606

The approach in [15] constructs a KG (using expressive OWL ontologies) to predict ICU607

(intensive care units) readmission risk by enriching EHR data with semantic annotations from608

various biomedical ontologies in BioPortal. These predictions are based on KG embedding, such609

as RDF2vec, OPA2vec, and TransE, and classical machine learning methods, such as Logistic610

Regression, Random Forest, Naive Bayes and Support Vector Machines. Drawing from the Health611

& Social Person-centric Ontology (HSPO) [165], which focuses on multiple clinical, social and612

demographic facets for a patient or cohort, the approach presented in [166] builds a person-613

centric KG (expressive OWL ontology with TBox and ABox) from structured and unstructured614

data in EHR). Subsequently, a representation learning approach using GNNs is used to predict615

readmissions to the ICU.616

4.2 What are the challenges?617

We present four of the open challenges to unlock the full potential of methods to advance knowledge618

discovery for the life sciences using KGs, based on the use cases above.619

How to incorporate the semantics from a KG in machine learning? Many life science620

knowledge discovery tasks are modeled as a machine learning classification problem, whose input621

and output labels have additional valuable information in one or multiple external KGs. The622

challenge lies in extracting this information, optionally encoding it into vector representations,623

and injecting that knowledge into machine learning and pre-trained language models. Doing624

this effectively remains an important open challenge especially for protein-related pre-trained625

language models [192, 186, 194]. Besides improving the accuracy in knowledge discovery,626

injecting semantics from KGs can also contribute to making the model more explainable (see627

Section 5), but to this end, much research is still required.628

How to deal with the long-tail phenomenon in machine learning with KGs? In629

machine learning classification for real-world life science knowledge discovery, the candidate630

labels often exhibit a long-tailed distribution, i.e., a small ratio of them are common with a631

large number of training samples available, while most of them are infrequent or even have632

never appeared before. For example, imbalance in training data may occur for rare diseases633

or adverse drug effects that affect only a small portion of the population [2, 72, 37]. KGs634

sometimes have encoded the relationships of the labels, and could be used to help train the635

model for predicting those long-tailed labels or enable the inference of such labels.636

How to create an efficient multi-modal representation of knowledge to enable637

discovery? Most current state-of-the-art methods build learned graph representations based on638

isolated modalities. Multimodal KGs can explicitly capture labeled nodes and edges, each with639
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well-defined meanings, across heterogeneous node types, relations and modalities (such as text,640

images, protein sequences, molecules fingerprints, diseases and more) [19, 100]. Incorporating641

KGs with multiple modalities for representation learning requires computationally scalable642

methods to compute the initial embeddings for each modality, as a preliminary step to learn643

computable representations of large knowledge. Furthermore, robust learning techniques are644

needed for generalizing the learned representations to nodes with unseen or missing modalities,645

thereby enabling the discovery of new knowledge. An example would be inferring properties of646

proteins for which only the sequence is known.647

How to efficiently utilize and fuse heterogeneous datasets, such as human-curated648

domain knowledge bases, scientific literature and person-centered health records,649

for knowledge discovery? State of the art shows that representations can be enhanced650

by incorporating richer information available across different sources [72, 100, 156]. Bringing651

in more data during training is needed to learn representations that can be applied to a652

broader range of downstream prediction tasks. However, learning from large and diverse KGs653

requires addressing challenges such as alignment, noise handling, balancing rich expressive654

knowledge with scalability and dealing with knowledge inconsistency. Moreover, more robust655

learning methods are needed for generalizing the learned representation to multiple downstream656

tasks (e.g., knowledge-aware transfer, zero-shot and few-shot learning [22]). An important657

aspect in this regard is addressing the disparity between all of the knowledge accessible during658

pre-training and the knowledge accessible or relevant for downstream fine-tuning [72, 100].659

5 Knowledge Graphs for Explainable AI660

Machine Learning (ML) and Artificial Intelligence (AI) methods are widely employed to tackle661

complex problems in many domains, including life sciences such as chemistry or biomedicine. Yet662

many of those methods operate as a “black-box”, not enabling domain experts to understand663

the reasoning behind their predictions [90]. This is a major concern, especially for applications664

in areas with a potential impact on human lives, or areas with legally enforced accountability665

or transparency [143]. Moreover, understanding the workings of AI methods is also crucial in666

the context of scientific applications, such as those described in Section 4, where explaining the667

prediction process can help elucidate natural phenomena [40].668

One way to address this issue is to employ the methods of eXplainable Artificial Intelligence669

(XAI). Although this is a topic long explored in the AI research community, there is still no670

widely-accepted definition of explainability, with many terms being used interchangeably, such as671

interpretability, comprehensibility, understandability and transparency [7]. Barredo et al. define672

explainability as the ability of a model to make its functioning clearer to an audience [7]. A673

slightly different definition is given in the previous survey [55]: “an interface between humans674

and a decision maker that is at the same time both an accurate proxy of the decision maker675

and comprehensible to humans”. Both definitions focus on the audience, for whom is the model676

explainable, but the second suggests an explanation is another artifact produced by a model or677

alongside the model.678

There are two distinguishable audiences in the context of the life sciences: scientists (researchers)679

and healthcare practitioners [167]. For the first group, the explanation is used as a guide to680

understanding within life sciences research for scientific discovery. As a result, the explanation681

may exist in a well-bounded context of a hypothesis or research project. On the other hand,682

practitioners are involved directly in decisions with impact on healthcare. They need to consider683

the output of the model in an open context, and sometimes also to explain the output to a patient684

who is not a domain expert.685
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A number of approaches for XAI emerge from the literature and broadly contain two parts:686

(1) transparent box design, which includes algorithms such as decision trees, where models can be687

directly interpreted by users and therefore an explanation of an output results in simply following688

the decision paths that relate input to output; (2) post hoc interpretability, which provides an689

explanation to a black-box model using additional methods such as probing, perturbing, or by690

constructing surrogate models for general ML or AI methods [90, 167].691

Utilization of KGs can greatly enhance XAI qualities as KGs are ideal for improving the model’s692

interpretability, explainability, and understandability. Some methods are directly built around693

KGs and thus take full advantage of them. Examples of those methods may include methods694

that are using paths [161], predicting links, or performing reasoning [33]. Other methods can be695

enhanced using the KG (e.g., [126]). Yet the enhancement effect greatly depends on the place696

where KGs are employed and iteratively applied: pre-model (e.g., KG construction, potentially697

multi-modal), in-model (e.g., integrating KG with machine learning models), and post-model (e.g.,698

reviewing and updating KG by domain experts to be applied in the next iteration to enhance699

machine learning models and their explanability) [143]. For example in in-model use, a model700

can be pre-trained using a KG, and an example of a pre-trained language model is SapBERT701

[108], which utilizes synonyms in the UMLS Metathesaurus to further pre-train a BERT language702

model. This can not only be beneficial for performance [192], but can also potentially enhance703

post-model explanation since the trained features are aligned with the KG [143].704

5.1 What has been done: use cases and recent developments705

Explainable AI for Healthcare Practice. The utilization of AI in healthcare practice raises the706

concern of leaving life-critical decisions to black-box models [143, 167]. For example, in the field of707

precision medicine which aims at tailoring drug treatments and dosages to each patient, clinicians708

require more information from a model than a simple binary decision [7]. The interpretability and709

explainability of AI models is thus an essential characteristic to make outputs understandable and710

transparent. This would enforce both clinicians’ and patients’ trust in models by complementing711

(and not substituting) clinicians’ explanations [20, 143, 167].712

To illustrate, this direction has been envisioned for several healthcare scenarios. Explainable713

AI models could support the experts in finding clinical trials that are appropriate based on patient714

history [167]. Counterintuitive or unreliable predictions that could have serious consequences715

could be explained, and thus prevented [167, 14, 90]. Some also envision such models to be used to716

explain and debunk healthcare-related misinformation [143]. As aforementioned, it is noteworthy717

that different kinds of explanations should be employed depending on the target audience, e.g.,718

scientific explanations for evidence or trace-based explanations for treatment [20].719

Explainable AI for Knowledge Discovery. As introduced in Section 4, KGs can support720

knowledge discovery in life science, including the explainability of the process and the discovered721

units. In this view, Ritoski and Paulheim [147] explain that ontologies, linked data, and KGs are722

used in the interpretation step of a data mining process, e.g., for interpreting sequential patterns723

in patient data [77], or to describe subgroups in a semantic subgroup discovery process [169].724

KGs can also serve both as the basis for knowledge discovery processes and the interpretation725

process. For example, Linked Open Data connecting drugs and adverse reactions can be analyzed726

with Hidden Conditional Random Fields to predict adverse drug reactions, where the paths727

from selected drugs to outcomes visually explain the prediction [87]. Similarly, Bresso et al. [12]728

leverage features extracted from KGs (interpretable features such as paths, neighbors, path729

patterns) and white box models (e.g., decision trees) to reproduce expert classifications of drugs730

causing or not specific adverse drug reactions. The rules extracted from the decision trees contain731
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features that provide explanations for the molecular mechanisms behind these adverse reactions732

according to experts. Sousa et al. [159] employ KGs to explain both protein-protein interaction733

predictions and gene-disease association predictions based on shared semantic aspects.734

Explainable AI for KG Construction The final use case considers the situation that XAI is735

applied to KGs themselves. We discussed the challenge to support human intervention in KG736

construction in Section 3.4. Recent KG construction gradually relies on data-driven, deep learning737

based methods to automatically induce knowledge from data. The deep learning models are738

opaque, and thus the process requires explainability. The resulting KG may not be accountable to739

be used for downstream applications. Trustworthy KG engineering is proposed in [191] to highlight740

the importance of embedding explainable AI and human intervention in the KG life cycle. XAI741

methods have been applied in many NLP related tasks (entity and relation extraction, entity742

resolution, link prediction, etc.) in KG construction from texts. The XAI methods rely either on743

feature-based explanations or knowledge-based explanations. While feature-based explanations744

try to infer explanations from the data or the models’ interpretation of the data, knowledge-based745

explanations aim to interpret the process with rules, reasoning paths, and structured contextual746

information. Rules and paths have mainly been used for explanation, especially for link prediction,747

a task comprehensively surveyed in [191].748

5.2 What are the challenges?749

How to integrate KGs for better XAI, especially with recent deep learning and750

language model based methods? KG may provide better data provenance for the model751

output. This can ensure explainability for communicating the model to domain experts in data752

science applications [7]. In terms of recent generative LLMs, life science KGs, with careful753

curation based on scientific publications, may help to provide provenance data to the answers754

generated by LLMs. Studies need to understand to what extent, and how, LLMs can be applied755

to induce knowledge (e.g., by probing LLMs with biomedical ontologies [65]), which then may756

provide a foundation to create better approaches to integrate KGs with LLMs. Another area757

is neuro-symbolic methods which may provide models that are inherently more interpretable758

(see further discussions in Section 6.1). Also, regarding language models (especially LLMs),759

they are capable of generating fluent texts, which can potentially serve as textual explanation760

generators from symbolic knowledge for XAI. Meanwhile, a key issue is the hallucination of761

LLMs, and KGs may support better prompting, fine-tuning and interpretable inference of762

LLMs for higher decisiveness and trustworthiness [134].763

How to evaluate XAI methods that involve KG? How to measure the quality of764

explanations, to ensure they are corresponding to users? The majority (around 70%) of XAI765

studies for KG construction do not evaluate the quality of the explanations or only informally766

visualize or comment on a limited number of cases to show the intuitive outcome [191]. Also,767

an XAI method needs to consider the target audience, as the explainability is to be finally768

received by a group of humans [7]. For instance, only a small number of current approaches to769

XAI for KG construction involve a user study, human evaluation or task-specific metrics [191].770

Evaluating the quality of explanations requires some expert evaluation performed as ex-post771

evaluation, and well-defined metrics are needed for this task. An example is in [57] to use a772

combination of users’ scores for each predicted explanation in a KG link prediction task, where773

there are multiple possible explanations. More expert validated and automated evaluation774

methods and associated metrics are required for KG-related XAI.775
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6 Discussion and Conclusion776

In this work, we have summarized the recent developments of KG research in life science on three777

important topics – KG Construction and Management, Life Science Knowledge Discovery, and778

KG for XAI. While each topic has its specific challenges, there are some common challenges and779

trends for the life science KG research in general.780

6.1 Overall challenges and trends781

Meanwhile, more scalable and efficient knowledge retrieval, query and reasoning systems, including782

life science KGs and mapping repositories, are still worthy of investigation and development.783

Evolution and Quality Assurance of KGs. KGs need to be updated as new data and784

knowledge are emerging, and the schema and facts can easily become outdated or less useful for785

existing applications in life sciences. In terms of KG construction, we discussed ontology extension786

as a use case to address the evolution issue or emergence of new concepts and relations, and also787

instance matching to extend new instances for the KG. Updating KGs is also a prerequisite for788

life science knowledge discovery and knowledge discovery methods should be able to support the789

evolution of KGs with e.g., the capabilities of continuous learning and zero-shot learning. Quality790

assurance is another issue for KGs, including the tasks of knowledge error detection and correction,791

knowledge completion, knowledge canonicalization, etc. On the one hand, more effective KG792

quality assurance methods and systems should be developed, including schema and constraint793

languages for quality verification and learning-based models for prediction (e.g., [24] combines794

both for fact correction); on the other hand, knowledge discovery methods should be robust to795

noisy KGs by investigating e.g., robust KG embeddings and multi-modal representation learning.796

Heterogeneity in KGs: Multi-domain and Multi-modality. KGs contain heterogeneous797

information, which brings challenges to their construction, representation, and reasoning. Different798

schema and data in KGs can have different focuses in their scopes and domains. Integrating data799

of different domains for building multi-domain KGs is difficult with challenges in e.g., ontology800

and data matching. Besides, recent studies have explored integrating different modalities to801

construct Multi-modal KGs [26, 122, 176], for instance text [133], images [179], etc. One challenge802

to address is how to learn effective machine learning models over multi-modal KGs fused from803

different sources (patients’ records, curated knowledge bases, and scientific literature) to support804

scientific discovery as well as KG construction and management. Another challenge is developing805

accurate and efficient knowledge representation approaches for texts and images in multi-modal806

KG construction. For example, careful consideration should be given to when to simply use an807

annotation property to associate an image with an entity, and when to use a property with specific808

semantics to connect an image and an entity.809

Human Interaction and Explainability with KGs. In KG construction, human experts810

are required for many sub-tasks of KG construction and provide oversight [191]. In life science811

knowledge discovery, human experts are necessary to finally validate the predicted new knowledge.812

The whole process of interacting with KG in life sciences requires explainability, especially when sub-813

symbolic models (e.g., pre-trained language models) are used. How to generate clear explanations814

for human interaction and how to evaluate the quality of explanations remains a challenge, as815

well as how to achieve consensus regarding scientific understanding with automatically discovered816

knowledge when organizing knowledge in life science [129]. The recent growth of Neuro-Symbolic817

methods suggests their support for explainability [89, 90, 150]. A recent survey [90] summarizes818

XAI in bioinformatics with a chapter on knowledge-based explanations, whereas Karim [89,819

Chapter 8] provides a neuro-symbolic framework for KG construction and utilization for medical820
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experts’ decision making in the cancer domain. The approach presented in [150] is another821

recent example of neuro-symbolic integration for image classification with KG-based XAI in the822

cultural heritage domain.823

Personalized and Customized KGs. A key challenge for KG construction is customization, as824

we discussed in Section 3, to construct application-oriented KGs, where relevant sub-KGs have to825

be extracted for large-scale KGs (a.k.a. modularization) and integrated with other knowledge and826

data from different sources. Besides, many life science KGs are about individuals, e.g., patients in827

healthcare applications, where Personal Health KG enables the integration of instance-level (or828

patient-level) information and their computation is required [122]. An example is the Personal829

Health KG in [21] that supports the dietary recommendation for users, where the construction830

and population of the KG requires reusing and integrating existing ontologies, dietary guidelines,831

and time-series patient data. The other examples of KGs integrating patients’ EHR data [166, 15]832

are presented in Section 4.1. In personal KG construction, personal data should be protected. KG833

scalability should also be considered in order to be used on small devices such as cellphones. This834

is still a big challenge that has been rarely considered in using KGs in the life sciences.835

Distributed KGs. The value of healthcare data for improving clinical knowledge and standard of836

care and the potential of semantic technologies to further enhance it are well recognized. However,837

a responsible use of healthcare data at the global level (beyond each healthcare provider and even838

each country) must take into account both legal and ethical issues in data sharing, privacy and839

security. Distributed knowledge graphs can mitigate these issues, by allowing for access control840

and privacy protection. Furthermore, distributed knowledge graphs can also address the challenges841

of scientific data ownership and stewardship by enabling the decentralized publishing of high842

quality data. Several approaches for federated querying and embedding of knowledge graphs have843

been proposed in recent years [25, 136, 157], however a wide adoption of semantic technologies in844

healthcare is still lacking, with a proliferation of terminological standards and a disconnection845

between data and meaning.846

Representation Learning with KGs: Symbolic and Sub-symbolic Integration. Across the847

topics and use cases, we see the importance of transforming symbolic knowledge into sub-symbolic848

representations or combining both representations. The combination of both the neural and849

the traditional symbolic representation methods leads to a trend in neural-symbolic approaches850

in the field [11]. Recently, Pre-trained and Large Language Models provide new methods to851

transfer self-supervised learning from a vast amount of corpora to support KG construction, e.g.,852

OntoGPT [17] and OntoLAMA [65]. LLMs are especially good at representing texts of life science853

publications in sub-symbolic spaces for semantic understanding. KGs may also provide a layer of854

explainability by validating the output of LLMs. A recent survey [134] proposes a roadmap for855

integrating LLMs and KGs. OntoProtein [192] is a recent example of how to integrate KGs into856

the process of pre-training LLMs in the bioinformatic domain, thus achieving improved results on857

protein-related knowledge discovery tasks. Also, geometry-informed representations of more formal858

KGs, especially in hyperbolic spaces or using complex geometric structures, e.g., [18, 99], can859

usually represent the structure of the KG with low dimensional vectors. Graph Neural Networks860

may also support the encoding of KG structures in a more explainable way with logical rules [30].861

6.2 Conclusion862

Knowledge Graphs have become a popular and effective method to represent heterogeneous863

concepts, relations, and data in life sciences. They require scalable solutions to represent and864

reason with heterogeneous data and require constant updates. Throughout this work, we covered865

the main topics and their corresponding use cases of KGs in multiple life science domains such as866
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protein analysis, drug discovery, ecotoxicology, and healthcare, and summarized the corresponding867

challenges. As new methods in knowledge representation appear, for instance the recent trends868

of human-in-the-loop, sub-symbolic knowledge representations, pre-trained and large language869

models, and neuro-symbolic integration, we envisage deeper applications of KGs to life science870

processes, that support the construction of more applicable KGs and the discovery of more871

reliable scientific knowledge, with explainability and human interaction better supported. KGs in872

combination with other modern machine learning and natural language processing techniques will873

become a foundation for AI for the life sciences.874

Appendix A: Terms in Knowledge Graphs and Life Sciences875

Below we provide a list of key terms used in this paper, as well as their definitions and explanations.876

Note we mainly use the original sentences in the sources that are referenced as the definitions.877

Description Logics: a family of knowledge representation languages that can be used to878

represent knowledge of an application domain. DLs differ from their predecessors, such as semantic879

networks and frames, in that they are equipped with logic-based semantics, the same semantics as880

that of classical first-order logic. Most ontologies are implemented in OWL, whose semantics are881

given by the Description Logic SROIQ. [5]882

TBox and ABox: the two components of domain knowledge in Description Logics, i.e., a883

terminological part called the TBox and an assertional part called the ABox, with the combination884

of a TBox and an ABox being called a knowledge base (KB). The TBox represents knowledge885

about the structure of the domain (similar to a database schema), while the ABox represents886

knowledge about a concrete situation (similar to a database instance). [5]887

Semantic Networks: a graph structure for representing knowledge in patterns of intercon-888

nected nodes and arcs [160]. We use the term to denote a graph of concepts and relations without889

formal semantics.890

Gene Ontology: The Gene Ontology (GO) knowledgebase provides a comprehensive, struc-891

tured, computer-accessible representation of gene function, for genes from any cellular organism892

or virus [4, 28].893

SNOMED-CT: Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) is a894

structured clinical vocabulary. It has a general and comprehensive coverage of clinical terms to895

support electronic healthcare systems and clinical applications. [38, 27]896

UMLS (UMLS Metahesaurus and UMLS Semantic Networks): Unified Medical897

Language System (UMLS) is a repository of biomedical vocabularies developed by the US National898

Library of Medicine. The UMLS is composed of three “knowledge sources”, a Metathesaurus,899

a semantic network, and a lexicon. The UMLS Metathesaurus is a comprehensive effort for900

integrating biomedical ontologies through mappings. The UMLS Semantic Networks define the901

types or categories, or Semantic Types, of all Metathesaurus concepts and their relationships, or902

Semantic Relations. [9, 27]903

ChEBI: Chemical Entities of Biological Interest (ChEBI) is a database and ontology containing904

information about chemical entities of biological interest. [62]905

Symbolic vs. subsymbolic representations: Rooted in cognitive science, symbolic systems906

of human cognition are related to the representation and manipulation of symbols; sub-symbolic907

or connectionist systems are most generally associated with the metaphor of a neuron, e.g.,908

perceptrons as an early system [94]. In terms of AI, symbolic systems contain logic-based and909

knowledge representations, while subsymbolic systems typically contain neural networks and deep910

learning based methods [41]. Neural language models and pre-trained language models [86] are911

also classified under subsymbolic systems.912
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Pre-trained and Large Language Models: Neural language modeling is the task of using913

neural network approaches to predict words from prior their contexts in a sequence. Pre-training914

is the process of learning some sort of representation (usually neural embedding based) of meaning915

for words or sentences by processing very large amounts of text (or other data in a sequence916

form, e.g., proteins and KG facts). This results in pre-trained language models. The dominating917

architecture for neural language modeling is Transformer-based models, including BERT, its918

domain specific versions, and later large variants, like the GPT series. The pre-trained language919

models of very large sizes are recently coined Large Language Models (LLMs). [86]920

Neuro-symbolic representations: refers to the integration of neural networks and symbolic921

representations to design AI models that base their prediction on both data and knowledge. [41]922
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