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— Abstract

The term life sciences refers to the disciplines that
study living organisms and life processes, and in-
clude chemistry, biology, medicine, and a range
of other related disciplines. Research efforts in
life sciences are heavily data-driven, as they pro-
duce and consume vast amounts of scientific data,
much of which is intrinsically relational and graph-
structured.

The volume of data and the complexity of sci-
entific concepts and relations referred to therein
promote the application of advanced knowledge-
driven technologies for managing and interpreting
data, with the ultimate aim to advance scientific
discovery.

In this survey and position paper, we discuss

recent developments and advances in the use of
graph-based technologies in life sciences and set
out a vision for how these technologies will impact
these fields into the future. We focus on three broad
topics: the construction and management of Knowl-
edge Graphs (KGs), the use of KGs and associated
technologies in the discovery of new knowledge, and
the use of KGs in artificial intelligence applications
to support explanations (explainable AI). We select
a few exemplary use cases for each topic, discuss
the challenges and open research questions within
these topics, and conclude with a perspective and
outlook that summarizes the overarching challenges
and their potential solutions as a guide for future
research.
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1 Introduction

The term life sciences refers to those disciplines that study living organisms and life processes,
and include chemistry, biology, medicine, and a range of other related areas. Research efforts in
life sciences are increasingly data-driven, as they produce and consume vast amounts of scientific
data, much of which is intrinsically relational and graph-structured.

Much of this data is large-scale, complex, and presents many interrelationships and dependencies,
thus being well suited to be represented in graph structures. For this reason, graph-based
technologies are frequently used in the life sciences, and these disciplines have been drivers and
early adopters of innovative methods and associated technologies.

In this brief survey and position paper we discuss recent developments and advances in the
use of graph-based technologies in life sciences, and set out a vision for how these technologies
will impact these fields in future. We illustrate the contribution in this paper in Figure 1.

We consider Knowledge Graphs (KGs) and their associated technologies to broadly include
(i) different forms of graph-based representations, (7i) the logical languages that assign explicit
semantics to such representations, and their associated automated reasoning technologies, and
(#i) machine learning approaches that ingest data in graph-based representations and that process
these graph-based representations to perform some task, e.g., data analytics.

These different forms of graph-based representations can be further categorized based on the
type of content represented. We therefore distinguish schema-less and schema-based Knowledge
Graphs. More specifically, a typical KG contains either or both a schema part (terminologies
or TBox!) and a data part (facts, assertions, or ABox). The formal semantics of KGs can be
expressed with the OWL ontology language?.

1 We introduce a list of key terms relevant to Knowledge Graphs and Life Sciences in Appendix A.
2 Web Ontology Language: https://www.w3.org/0WL/
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‘ for Explainable Al | = Explainable Al for Knowledge Discovery « Distributed KGs

(Sect. 5) = Explainable Al for KG Construction < Representation Learning: Symbolic & Sub-
symbolic Integration

Figure 1 An overview illustration of definitions (upper right, in gray), topics (left column, in blue),
use cases (middle), and challenges (bottom right, in green) for the research of KGs in the life sciences.

In the remainder of this paper we will focus on three broad topic areas in which graph-based
technologies have been used extensively, and we illustrate each area with some specific projects or
use cases that guide our discussion and summary of the challenges that have been encountered.

The construction and management of KGs to represent life science knowledge;
The use of KGs and associated technologies in the discovery of new knowledge;

The use of KGs in artificial intelligence applications to support explanations (eXplainable AI
or XAI).

We then provide a summary of the general challenges across the topics, that include intrinsic
characteristics of KGs (e.g., scalability, evolution, heterogeneity) and their operational aspects in
the real world (e.g., human interaction, personalization, distributed setting, and representation
learning). We present the challenges by means of use cases and the current research efforts that
address them. It is worth mentioning that while we aim to focus on the life sciences, many of the
topics and challenges discussed in this work, especially those of KG construction and management
in Section 3, are general and applicable to KGs in other domains such as finance, e-commerce,
material, and urban management [111, 31], etc. The KG-based problem modeling and solving
approaches in life science knowledge discovery could be applicable for addressing many other use
cases and problems in a broader domain of Al for scientific discovery [175, 60].

In the next section, we introduce several different categories of KGs as they have been used in
life sciences. Thereafter in Sections 3-5, each of the above topics is described in a dedicated section
together with a survey of recent advances. Finally, in Section 6 we synthesize the overarching
challenges and trends into a perspective on the outlook for the future.

2 Knowledge Graphs in the Life Sciences

KGs represent semantically-described real-world entities, typically through ontologies (vocabularies
or schemas) [68, 61] and the data instantiating them, and thus provide descriptions of the entities of
interest and their interrelations, by means of links to ontology classes describing them, organized in
a graph [158]. KGs have been widely adopted in the life sciences, as can be seen in the composition
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of the Linked Open Data Cloud?, where life sciences represent one of the largest subdomains. A
prominent example is the KG representing annotations regarding proteins by means of terms in
the Gene Ontology describing different protein functions [4].

Whilst KGs are becoming increasingly popular in different domains including the life sciences,
there is no single accepted definition of KG [43]. A KG can be formally described as a directed,
edge-labeled graph G = (V, E), where V refers to the vertices or nodes, representing real-world
entities of interest (e.g., proteins, genes, compounds, cellular components, but also pathways,
biological processes and molecular functions, to name a few) while E refers to the edges in the
graph, representing relationships or links between the entities in V' (e.g., binds, associates, etc.).
These may be represented as statements about entities in the form of RDF* triples: (subject,
predicate, object).

However, this formal definition only focuses on the components of KGs, but does not pose any
constraint on what a KG should model or represent, and how. This is particularly true in life
sciences, where the term Knowledge Graph has been used to refer to diverse graph data structures,
typically interconnected, but often isolated.

Many of the everyday tasks faced by researchers in this domain require the systematic processing
and integration of data and knowledge from data sources that are characterized by heterogeneous
syntaxes and structures, formats, entity notation, schemas and scope, e.g., ranging from molecular
mechanisms to phenotypes. Researchers in this area have been early adopters of Semantic Web
and linked data approaches as a means to facilitate knowledge integration and processing to
support tasks including semantic search, clinical decision support, enrichment analysis, data
annotation and integration. However, a recent analysis of life science open data has identified
several stand-alone data sources that exist in isolation, are not interlinked with other sources,
and are schema-less (or use unpublished schemas), with limited reuse or mappings to other data
sources [88]. Therefore, we can define a life sciences KG, following [130], as a data resource
integrating one or more possibly curated sources of information into a graph whose nodes represent
entities and edges represent relationships between two entities. This definition is consistent with
other definitions found in the literature, e.g., [135].

These considerations underlie the reasons why KGs in life sciences can be of different types,
and can be categorized across different dimensions. One of the most critical dimensions (in terms
of support for complex queries and integration) is the categorization of KGs into schema-based
and schema-less knowledge bases. In turn, the expressivity of the schema provides a further
categorization criterion, depending on whether schemas are modeled as simple taxonomies (e.g.,
the NCBI taxonomy [154] included in the UMLS Metathesaurus [9]), RDFS® vocabularies or (fully
axiomatized) OWL ontologies. In particular, this paper refers to this broad definition of KGs,
which we then divide into:

Schema-less KGs composed of only relational facts in the form of RDF triples. Examples
include the PharmaGKB dataset, an integrated online knowledge resource capturing how
genetic variation contributes to variation in drug response [180]. Note that many semantic
networks (defined in Appendix A) could be assigned to this category as their triples form a
multi-relational graph.

Schema-based KGs composed of relational facts and their schema (meta information) in e.g.,
RDFS, OWL, and constraint languages such as SHACLS. Examples include Wikidata with its

http://cas.lod-cloud.net

Resource Description Framework: https://www.w3.org/RDF/
RDF Schema: https://wuw.w3.org/TR/rdf-schema/
https://www.w3.org/TR/shacl/

(=2 S B V)
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property constraints, and DBpedia with its DBpedia ontology. Whilst Wikidata and DBpedia
are general-purpose KGs, they also include large-scale life science knowledge.

Simple ontologies representing taxonomies. Notable examples include the tree structure of the
UMLS Semantic Network” and the International Classification of Diseases, version 10 (ICD-10)
[182].

Expressive OWL ontologies, with complex axioms beyond simple taxonomies. OWL ontologies
may be composed of a TBox and an ABox. Depending on the expressivity of the axioms
modeled in the ontology, i.e., the basic statements that an OWL ontology expresses, OWL
ontologies can fall into one of the previous categories: for instance, an OWL ontology with
just an ABox can be seen as the case above of a KG composed of relational facts alone. In
this final category we include fully axiomatized OWL ontologies, e.g., with complex classes
and property restrictions. Notable examples of these ontologies include SNOMED CT [38],
the Gene Ontology [4, 28], and the Food Ontology (FoodOn)3.

3 Knowledge Graph Construction and Management

The adoption of KGs in the life sciences is motivated by the need for standardization of taxonomies
and vocabularies to support the integration, exchange and analysis of data. More recently, richly
annotated data is also being used in combination with machine learning methods for many
applications, including helping to overcome issues related to the sparsity of data and helping to
select promising candidates for reducing expensive and time-consuming physical experiments [64].
Graph-based machine learning approaches such as Graph Neural Networks have been applied to a
number of life science tasks [49], including drug repurposing [120] and predicting polypharmacy
side effects [196].

Given the diverse nature of the knowledge and tasks supported by KGs, the focus of state-
of-the-art approaches has been the description of how individual KGs are developed within the
specific domain [190], typically in terms of the specific approaches used for the development of the
KG (e.g., data extraction process, relation extraction and entity discovery), rather than on the
overall development process. More recently, some efforts have focused on providing an overview
of development approaches and pipelines for the construction of KGs in the life sciences, and
beyond [130, 164]. The process of constructing a KG depends heavily on:

The type of data sources integrated and annotated by the KG, e.g., CSV files, public and
proprietary data sources, structured databases, full-text publications, etc.

The granularity of the KG to be constructed, e.g., schema-less KG, simple or expressive
ontology.

The usability expectations in downstream applications, e.g., the ability to customize and
manipulate the graph to support different use cases, or the ease of consumption as input to
machine learning methods [51].

A recent systematic review [164] surveyed different KG development approaches to determine
a general development framework. The review identified six main phases that are common across
different KG development approaches:

1) Data source selection.
2) Ontology construction.

" https://uts.nlm.nih.gov/uts/umls/semantic-network/root
8 http://foodon.org
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3)
4)
5) KG storage and inspection.
6)

Knowledge extraction.
Knowledge ingestion and validation.

KG maintenance and evolution.

In the remainder of this section we will present the individual phases and the role they play
in a KG development process by means of two use cases, where we illustrate the construction
of KGs and discuss how these support knowledge integration and validation (Section 3.2). We
then present some recent technical developments in Section 3.3, while Section 3.4 discusses open
challenges for the construction and management of KGs.

3.1 Knowledge Graph Construction Phases

This section provides more details on the phases involved in the KG construction process, with
the aim of identifying recent trends, rather than providing an exhaustive literature survey. These
phases are discussed in order of execution, however the ontology construction phase can occur either
together with the data source selection (if an ontology covering the domain of interest already
exists or can be constructed through a set of given requirements) or as part of the knowledge
ingestion and validation phase, where an ontology is built semi-automatically from the available
data or through modularization and alignment of existing ontologies.

3.1.1 Data source selection

This phase identifies the data sources that are to be integrated by the KG, which in turn affects
the choice of knowledge extraction techniques. Generally, life science KGs ingest knowledge
from structured, semi-structured and unstructured data sources. By structured we refer to data
modeled according to an existing structure, e.g., data in tables or public or proprietary reference
(relational) databases such as UniProt [29] or ChEMBL [50]. Semi-structured data refer to, e.g.,
XML documents [116], whereas unstructured data refer to data that do not conform to a given
structure, i.e., free-text sources, such as scientific publications from PubMed®. Data ingested
from manually curated databases [130] and semi-structured sources constitute the foundation of a
KG [51], generally defining the entities and some of the relations in the KG. This data is then
further enriched by performing text mining on large-scale free text sources, in order to extract
relationships, which is the objective of the knowledge extraction phase.

3.1.2 Ontology construction

The aim of this phase is to define a common, consensus-based, controlled vocabulary to describe
the data in an ontology [146]. The existence of a common structure, or schema, supports querying,
integration and reasoning tasks over the KG.

Traditional ontology engineering approaches are divided into top-down or bottom-up. Top-
down approaches are based on more or less formal ontology engineering methodologies [45, 95, 131]
or common practices [3] to build ontologies from a description of the domain elicited from domain
experts [129], and/or by reusing or extending existing ontologies [82]. Ontology engineering
methodologies define the ontology development process in terms of requirement analysis, entity
and property definitions, ontology reuse, validation and population. In contrast, bottom-up
approaches utilize semi-automatic data driven techniques, e.g., ontology learning from text [110],

9 https://pubmed.ncbi.nlm.nih.gov
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and can be used to refine and validate an ontology. These approaches are discussed in more detail
when presenting the knowledge ingestion and validation phase.

Whilst general purpose ontology engineering methodologies have evolved to be used in the
development of KGs [139], a considerable number of ontologies in the life science domain have been
built as part of the Open Biological and Biomedical Ontologies (OBO) Foundry effort,'? which
defines a set of development principles for biological and biomedical ontologies and provides a suite
of high-quality, interoperable, free and open source tools that support ontology development [115].

3.1.3 Knowledge extraction

Knowledge extraction refers to the identification of entities and their relations from the data sources,
which is a crucial step in the development of a KG [164]. Entity extraction identifies entities from
the various data sources selected using Natural Language Processing (NLP) approaches and text
mining techniques to analyze and extract relevant information from large text corpora [178, 103, 71].
Named entity recognition (NER) supports the identification of named entities in text, such as drug
names, diseases, or chemical compounds, and their classification according to pre-defined entity
types [127]. NER approaches in the life sciences are typically based on labor intensive tasks such
as the definition of generic (e.g., orthographic, morphological, or dictionary-based) and specific
rules that are typically defined by experts, and are not easily applicable to other corpora [195].
There are a number of issues hindering these approaches: a) the pace of scientific discovery and
the identification of new entities; b) the large number of synonyms and term variations associated
with an entity; and c) entity identifiers that are composed of a mixture of letters, symbols and
punctuation, often in large sentences [101]. More recent approaches have proposed the use of
supervised machine learning methods (e.g., conditional random fields, or Support Vector Machines,
SVMs, neural networks, and neural language models in particular) [112, 86, 35] either in isolation,
or combined in hybrid approaches to improve accuracy [149].

Entity recognition generates entities that are isolated and not linked [164]. The goal of Relation
extraction is to discover relationships of interest between a pair of entities, thus describing their
interaction. Relation extraction is a necessary step for entities defined in semi-structured or
unstructured sources, whereas structured data sources are characterized by explicitly identifiable
relationships. Typical approaches for relation extraction include rule-based [75, 145, 144], super-
vised [106, 48] and unsupervised approaches [98, 130]. Rule-based relation extraction identifies
keywords (based on existing ontologies or expert defined dictionaries) and grammatical patterns
to discover relations between entities. Supervised relationship extraction methods utilize publicly
available pre-labelled datasets (e.g., Biolnfer [141] or BioCreative II [97]) to construct generalized
patterns that separate positive examples (sentences implying the existence of a relationship) from
negative ones. Supervised approaches include SVMs, Recurrent Neural Networks (RNNs) and
Convolutional Neural Networks (CNNs) [6, 130]. Unsupervised relation extraction methods [113]
have emerged to address the lack of scalability of supervised relation extraction methods, due
to the high cost of human annotation. Unsupervised methods involve some form of clustering or
statistical computation to detect the co-occurrence of two entities in the same text [130].

More recently, end-to-end approaches (End-to-End Relation Extraction — RE) have been used
to tackle both tasks simultaneously. In this scenario, a model is trained simultaneously on both
the NER and Relation Extraction objectives [74]. Furthermore, rule-based approaches can be
combined with relation classification using specialized pre-trained language models adapted for
life science domains, e.g., BioBERT [102], SapBERT [108], and RoBERTa-PM [104], to name a

Onttps://obofoundry.org
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few. There is also a recent trend to probe and prompt pre-trained language models to extract
relations (e.g., disease-to-disease, disease-to-symptoms) [187, 163].

3.1.4 Knowledge ingestion and validation

The aim of this phase is to ingest the entities and relationships extracted in a previous phase, which
models knowledge from different sources. These entities and relations can be incomplete, ambiguous
or redundant, and need to be appropriately aligned and integrated, and finally annotated according
to the ontology constructed in phase 2.

Knowledge integration or fusion can critically improve the quality of data by performing entity
resolution, i.e., the detection of different descriptions of the same real-world entity (also called
entity matching, deduplication, entity linkage or entity canonicalization), prior to ingesting them
in the KG. This reconciliation step is particularly crucial in the life sciences, where duplication can
be caused by data modeled using different vocabularies or ontologies, or when data is extracted
from literature sources that are rapidly changing. The severity of the ambiguity depends on the
number of ontologies available for the domain. For instance, the number of gene vocabularies is
far smaller than the number of disease vocabularies that could be present in the ingested datasets.
Linking these entities requires costly alignment processing; in particular the alignment of disease
entities is especially problematic given the number of different coding systems, whose conversion is
often not trivial [51]. We further explore this issue in two of the use cases presented in Section 3.3,
where we explore the problem of aligning vocabularies and ontologies through the use of mapping
repositories and instance matching in automated clinical coding.

Entities are assigned unique identifiers (URI or IRI) that support the definition of bespoke
namespaces, and support integration by reusing identifiers in related namespaces. Entity resolution
is based on clustering similar entities together in a block, where similarity measures are used to
detect duplicates [164]. Typical methods include sorted neighborhoods and traditional blocking;
and machine learning methods are commonly used for similarity computation, e.g., feature vector
computation [93].

This phase may also include the bottom-up construction of the ontology for those applications
where a top-down approach is not feasible. Bottom-up approaches extract the relevant knowledge
first, and then they construct the data schema / ontology based on the extracted data, typically
using (semi-)automated methods, based on machine learning. Ontologies define the structure
of the knowledge graph, which supports querying and data analytics. In bottom-up ontology
development the structure of the knowledge graph is determined based on the extracted knowledge,
thus providing a structure for this knowledge [69].

Often the construction of ontologies (either bottom-up or top-down) relies on the ability to
correctly align and reuse entities defined across different domains and KGs. Furthermore, reuse of
(or conformance to) existing upper level ontologies, e.g., BFO (Basic Formal Ontology) [3] provides
the basis for the consistent and unambiguous formal definition of entities and relations that
prevents errors in coding and annotation. The alignment of ontologies in life sciences and other
domains is an active area of research, and we provide an overview of recent technical developments
and challenges in Section 3.3.

Whilst bottom-up approaches, especially those based on alignment, are becoming more viable,
especially given the support of language models, such as BERT [63], their performance is not
always adequate for the task, as discussed in the second challenge in Section 3.4.

Knowledge enrichment and completion improve the KG quality by performing reasoning
(KG materialization), inference [56] and optimization. Reasoning and inference support the
assertion of new relations based either on logical reasoning (e.g., [128, 170]) or machine learning
techniques (e.g., statistical relational learning or through embedding based link predictors for new
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concepts [34, 35, 66, 76] and node classifiers, also called KG refinement [135]). The extent and type
of logical inferences depends on the expressivity of the ontology built in phase 2, or in a bottom-up
fashion in this phase, together with any associated mappings. Description Logic formalisms, such
as OWL, use logic-based reasoning for detecting and correcting incorrect assertions and ontology
alignments [24].

3.1.5 KG storage and inspection

KGs need to be accessible to support a variety of different tasks, beyond the mere integration of
different knowledge sources, and thus KG storage management [164, 142, 177] is an active area of
research. Current KG storage mechanisms are divided into relation based stores (e.g., [1]) and
native graph stores (e.g., [197]). Relational KG stores, either based on relational databases or
through NOSQL databases and / or triple stores such as Jena TDB!!, have reached a considerable
level of maturity and have been optimized in order to avoid common problems, e.g., a large number
of null values in columns or optimized query performance [142]. Graph databases store nodes,
edges and properties of graphs natively, and support query and graph mining tasks. Examples
of state of the art implementations include Neo4J'2, GraphDB'3, and RDFox'*. The evolution
of the performance of these systems has been the object of systematic studies [8], whereas [168]
explicitly focuses on biomedical use cases.

Storage management has implications on the ways KGs support expressive queries for nodes and
edges and visualization, to support data analysis, navigation and discovery of related knowledge [93,
162]. Graph databases often provide built-in tools for visualization, e.g., NeodJ, whereas different
Javascript libraries (e.g., SigmaJS'®) are available for developing visualization front ends. Support
for complex queries is also either built in a graph database or a triple store by supporting the
SPARQL query language [140, 197], or proprietary query languages such as Cypher [47], supported
by Neo4J.

3.1.6 Knowledge maintenance and evolution

Given the rapid scientific development in the life sciences, and the consequent continuous update
of ontologies for this domain, artifacts annotated with these ontologies can become outdated
very quickly, and require some form of update (also called ontology extension). These update
mechanisms need to be automated to ensure that they scale to the size of KGs. Automatic update
approaches are based on the periodical detection and extraction of new knowledge that is then
mapped to existing entities and relations in the KG [183].

Update mechanisms are typically based on the detection of changes [121] that can affect an
ontology, e.g., addition, removal or modification of meta-entities (i.e., entities, relations and their
definitions). These changes include renaming concepts and properties, setting domain and range
restrictions, or setting a subsumption relation. To date, the most comprehensive account of
ontology change is given in [46], where change is described for different sub-fields, e.g., ontology
alignment, matching and mapping, morphisms, articulation, translation, evolution, debugging,
versioning, integration and merging; each with different requirements and implications. The study
[137] further investigates the impact of biomedical ontology evolution on materialization.

"Unttps://jena.apache.org/documentation/tdb/index . html
2https://neodj.com

Bnttps://graphdb.ontotext.com

M https://www.oxfordsemantic.tech/product

Y nttps://github. com/jacomyal/sigma. js

5:9

TGDK


https://jena.apache.org/documentation/tdb/index.html
https://neo4j.com
https://graphdb.ontotext.com
https://www.oxfordsemantic.tech/product
https://github.com/jacomyal/sigma.js

5:10

327
328
329
330
331
332

333

334

335
336

337

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

361

362
363
364
365
366
367

368

Knowledge Graphs for Life Sciences

Currently available tools and methodologies use (semi)-automated methods to perform many
of the operations that trigger a change in an ontology and the consequent creation of a new
version [54, 63]. Different ontology management platforms and portals mandate different principles
and frameworks for handling ontology versioning (e.g., OBO foundry!® or BioPortal'”), but these
are typically implemented by ontology developers with limited tool support. Section 3.3 presents
an example of automated ontology extension that relies on machine learning to cope with the
scale of data.

3.2 Examples of Life Science KG Construction

In this section we provide two examples of life science KGs that illustrate in practice the
phases composing the generic KG construction process discussed in Section 3; namely a KG for
Pharmacogenomics, PGxLOD [118], and one for Ecotoxicological Analysis, TERA [124, 125].

Alignment for Knowledge Validation: An Example of Pharmacogenomics. As mentioned
in Section 3, the task of aligning knowledge in KGs supports several downstream applications
and domains. For instance, pharmacogenomics studies the influence of genetic factors on drug
response phenotypes (e.g., expected effect, side effect). Hence, pharmacogenomics is of interest for
personalized medicine. The atomic knowledge unit in pharmacogenomics is a ternary relationship
between a drug, a genetic factor, and a phenotype. Such a relationship states that a patient
being treated with the specified drug while having the specified genetic factor may experience the
described phenotype. Semantic Web and KG technologies have been employed in this application
domain, for example by building ontologies in which patients and pharmacogenomic knowledge are
represented, and then using deductive reasoning mechanisms to conditionally recommend genetic
testing before drug prescription [153]. However, the knowledge relevant to pharmacogenomics
is scattered across several sources including reference databases such as PharmGKB, and the
biomedical literature. Additionally, this knowledge may lack sufficient validation to be implemented
in clinical practice. For example, some relationships may have only been observed in smaller
cohorts of patients or in non-replicated studies. Hence, there is a need to align different sources of
pharmacogenomic knowledge to detect additional evidence validating (or moderating) a knowledge
unit. To this aim, the PGXxLOD KG was proposed [118]. Automatic knowledge extraction
approaches were applied on semi-structured and unstructured data from PharmGKB and the
biomedical literature to represent their knowledge in the KG. Then, matching approaches were
developed to align knowledge units from various sources [117, 119]. The resulting alignments
outlined some agreements between PharmGKB and the biomedical literature, which was expected
since PharmGKB is manually completed by experts after reviewing the literature. Interestingly, this
automatic knowledge extraction pipeline could guide the manual review process by automatically
pointing out studies confirming or mentioning a pharmacogenomic knowledge unit.

Knowledge Integration: An Example of Ecotoxicological Analysis. In ecotoxicological
analysis, data and knowledge from different domains such as chemistry and biology are often
needed. These are usually located in different sources such as spreadsheets or CSV files for
local experimental results, open databases for public research results, and ontologies for domain
knowledge. Thus knowledge integration becomes a critical and fundamental challenge before
real analysis can be conducted. In the study by Myklebust et al. [124, 125], which aims to
predict adverse biological effects of chemicals on species, a toxicological effect and risk assessment

S http: //www.obofoundry.org/principles/fp-004-versioning.html
" https://bioportal.bicontology.org
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KG named TERA was constructed for knowledge integration. TERA includes three sub-KGs:
(i) the Chemical sub-KG, which is constructed by integrating the vocabulary MeSH (Medical
Subject Headings) with selective knowledge from two chemical databases PubChem and ChEMBL
utilizing the chemical mappings in Wikidata; (4) the Taxonomy sub-KG, which is constructed by
integrating EOL (Environment Ontology for Livestock) and the NCBITaxon ontology utilizing
NIBI-EOL mappings in Wikidata; and (4ii) the ECOTOX sub-KG, which is composed of RDF
triples transformed from experimental risk results and is aligned with the other two sub-KGs by
the ontology alignment system LogMap [80] and the chemical mappings in Wikidata. Another
example of knowledge integration is for drug repurposing, where the KG Hetionet!® is created by
integrating 29 public resources, including biomedical KGs and other types of data [67].

3.3 What has been done: recent technical developments

Given the many existing ontologies in life sciences, e.g., ontologies available in the OBO Foundry
collection or in BioPortal [132], KG construction usually involves the reuse, alignment, and
enrichment of state-of-the-art ontologies. The existing ontologies in life sciences need to be
updated given the new discoveries in the field. This is broadly a key issue in the management,
maintenance, and evolution of ontologies. We select a few promising use cases below to highlight
some recent developments that support the KG construction in the life sciences.

Repositories of Ontologies and Mappings. Ontologies and their mappings play a central
role in semantically enabled products and services consumed by life science companies, academic
institutions and universities, as highlighted by the Pistoia Alliance ontology mapping project [58].1
Ontology mappings are essential in knowledge graph construction tasks to bridge the knowledge
provided by different ontologies and expand their coverage. Ontology mappings can also play a key
role when identifying the right ontologies to be reused as they will enable the retrieval of the relevant
(overlapping) ontologies for the domain of interest. For this reason, a number of notable efforts in
life sciences have created large repositories of ontologies and mappings to serve the research within
the community. Prominent examples include the UMLS Metathesaurus [9], BioPortal [132, 152],
MONDO [172], and the EBI services: OLS [174], OxO [84] and the RDF platform [85]. The UMLS
Metathesaurus is a comprehensive effort for integrating biomedical ontologies through mappings.
In its 2023AA version, it integrates more than two hundred vocabularies, with more than 3 million
unique concepts and more than 15 million concept names. BioPortal is a repository containing
more than 1,000 biomedical ontologies and more than 79 million lexically computed mappings
among them (as of July 13, 2023). The Mondo Disease Ontology (MONDO) is a manually curated
effort to harmonize and integrate disease conceptualizations and definitions across state-of-the-art
ontologies (e.g., HPO [96], DO [155], ICD, SNOMED CT, etc.). The services provided by the
European Bioinformatics Institute (EBI) also deserve a special mention. The Ontology Lookup
Service (OLS) has become a reference to explore the latest versions of more than two hundred
ontologies via its graphical interface or programmatically via its API. OxO is a repository of
ontology mappings and cross-references extracted from the OLS and UMLS. OxO allows users to
visually traverse the graph of mappings to identify additional potential mappings beyond direct
ones (i.e., multi-hop mappings). Finally, the EBI RDF platform provides a unified KG with all
the RDF resources at the EBI. Complementary to the efforts from the life sciences, the Semantic
Web has also contributed to the systematic evaluation of mappings in public repositories (e.g.,
[81, 44]) and mappings produced by automated ontology mapping systems (e.g., the Ontology

8 https://github.com/hetio/hetionet
Y nttps://www.pistoiaalliance.org/projects/current-projects/ontologies-mapping/
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Alignment Evaluation Initiative (OAEI) [138]). Automatically generated mappings of high quality
have the potential to be integrated within the aforementioned repositories and hence, the OAEI
has always had a special focus on life science test cases with evaluation tracks like Anatomy [39],
LargeBio [83], Phenotype [59] and the newly created track BioML [64]. The Simple Standard for
Sharing Ontological Mappings (SSSOM) [114] represents a joint effort between the life sciences
and Semantic Web communities to facilitate the exchange of mappings across different parties
and repositories, while keeping the provenance and other relevant characteristics of the mappings.

Ontology Extension. Ontology extension in life sciences aims to connect new concepts and their
relations to an ontology from updated sources, e.g., scientific papers in PubMed and chemical
information in PubChem?°. Manual ontology extension, while essential for the development of
gold standard resources, is not scalable to the full scope of large domains due to its high cost and
low efficiency, and sometimes is even unfeasible as human beings may not be able to review the
quantities of new information at the rate they become available. Thus machine-learning-based,
automated methods are needed. One recent example is the use of deep learning, specifically
a Transformer-based model, to categorize new chemical entities within the ChEBI ontology?!
[53]. In addition, recent studies have explored enriching SNOMED CT by mining new concepts
from texts [35] and placing them into the ontology [109, 34]. A new concept can be identified
by NIL entity linking, i.e., exploring unlinkable mentions, usually through setting a “linkable”
score threshold or through classification [35]. Resolution and disambiguation of NIL mentions
with clustering can help to represent NIL entities [66, 91]. For concept placement, similar to
the aforementioned CHEBI ontology extension [53], machine learning, especially in the form of
Transformer-based deep learning, has been applied to predict subsumption relations between
a new concept and the existing concepts. Complex concepts in OWL ontologies that contain
logical operators (e.g., existential quantifier and conjunction in SNOMED CT) can be supported
in subsumption prediction [23] and new concept placement [34]. Another group of studies use
post-coordination or formalising a new term with existing concepts and attributes [16, 92], which
is similar to composing subsumption axioms with complex concepts. The methods include using
lexical features [92], word embeddings and KG embeddings [16]. Pre-trained and Large Language
Models, through fine-tuning, zero-shot and few-shot prompting have the potential to support the
mining [35] and placement of new concepts (e.g., by subsumption prediction [23, 65]).

Instance Matching: Automated Clinical Coding. A main source for patients’ KG construc-
tion is Electronic Health Records (EHR). Using medical ontologies as backbones, it is possible to
add a layer of data by instance matching (or patient matching) through Clinical Coding. Clinical
coding is the task of transforming medical information in EHR into structured codes described in
medical ontologies [36], e.g., ICD and SNOMED CT. Recent approaches mainly formulate the
problem as a multi-label classification problem. Various neural network architectures have been
proposed and knowledge plays a key role to enhance the neural architectures [36, 79]. Pre-trained
language models, e.g., BERT [32], have been applied to clinical coding and gradually achieved
better results with adapted modeling methods and more advanced language models, e.g., PLM-ICD
[70] with RoBERTa-PM [104], according to studies [36, 42, 78]. Other studies formulate the task
as a Named Entity Recognition and Linking (NER+L) problem, by extraction of concepts and
linking them with the ontologies [36]. Overall, the recent progress in clinical coding, along with
the advent of Large Language Models (LLMs) suggests a trend in this area for patients’ KG
construction from EHR. However, there is still room for improvement in knowledge integration to

20t tps://pubchem.ncbi.nlm.nih.gov/
2 https://www.ebi.ac.uk/chebi/
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better address explainability (see Section 5 for more details) and in zero-shot learning problems,
i.e., for classifying into rare codes or concepts [36, 42, 79]. There are also further recent examples
of instance matching with EHR data, including the works [15, 166].

3.4 What are the challenges?

KG construction and management often play a fundamental role in supporting life sciences with
computation. There are still quite a few technical challenges, and many of the current tools and
algorithms can be improved by modern machine learning and Al techniques. Here we present
some critical and fundamental technical challenges.

How to construct a customized KG? For a specific application, we often need to extract
relevant data and knowledge from multiple sources, and at the same time integrate extracted
knowledge from different sources. Considering a case study of personal health assistance, a
customized KG with knowledge of at least exercise (sports), food, disease and medicine are
required, while fine-grained knowledge of these aspects will lie in different domain KGs. The key
challenge for integrating different ontology modules lies in estimating the semantic similarity and
discovering the equivalence of two knowledge elements with their contexts considered, as well as

the subsequent refinement like KG completion and knowledge representation canonicalization.

Adequate tool support to minimize manual curation but enabling the user involvement when
required is also paramount (e.g., [105]).

How to ensure adequate performance using machine learning based approaches for
automated KG construction? At the TBox level, the state-of-the-art alignment between
classes (especially for subsumption relations) seems to not yet be achieving good enough
performance, as reflected in recent biomedical ontology alignment benchmarking [64]. At the
ABox level, predicting missing facts for practical KG construction expects high precision (e.g.,
beyond 90% or 95%) but only a few relations can be populated with a precision above 80%
using prompt learning with BERT as evaluated in [173]. This is also the case to associate
patients’ EHR (as a part of ABox) with clinical codes or concepts in medical ontologies, where
a micro Fy score is below 60% [36]. Learning subsymbolic representations (see defined in
Appendix A) of KG and data sources may help address the challenge. Transformer-based
language models have achieved great performance in recent years. Among them, pre-trained
language models such as BERT have been applied for KG construction with a promising
performance achieved (see e.g., the package DeepOnto [63]), while the more recent and more
powerful generative language models like GPT series [13] have not been well applied at the
time of writing, especially in the life science domain.

How to ensure reliable semi-automated deep learning-based KG construction with
human interaction? Many tasks in the KG life cycle unavoidably rely on human experts to
achieve consensus on reliable knowledge; on the other hand, as the automated KG construction
process is growing opaque with deep learning methods, it is important to ensure trustworthiness
and reliability [191]. Apart from enhancing performance metrics with novel methods, results
with certain explainability are needed, for example, highlighting key parts in the data input
when they are used as sources for KG construction. We discuss other aspects of explainability

with KG, on life science knowledge discovery and healthcare decision making, in Section 5.

Human-in-the-loop learning design for explainable KG construction may ensure the use of
experts’ knowledge for the task across the KG life cycle, which still remains a challenge for
future research [191].
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4 Life Science Knowledge Discovery

Research into Al technologies — including machine learning and KG-based reasoning — to accelerate
the pace of scientific discovery is an emerging and rapidly developing field. The challenge lies in
assisting scientists to uncover new knowledge and solutions, such as discovering novel therapeutic
opportunities, identifying candidate molecular drugs to treat complex diseases or alternatively
new uses for existing drugs, and supporting more personalized predictions.

Knowledge Graphs are powerful tools for representing complex biomedical knowledge, including
molecular interactions, signaling pathways, disease co-morbidities, and more. Overviews of graph
representation learning in biomedicine for healthcare applications and polypharmacy tasks are
presented in [107] and [52] respectively. In graph representation learning, the graph’s topology
is leveraged to create compact vector embeddings. Through nonlinear transformations, high-
dimensional information about a node’s graph neighborhood is distilled into low-dimensional
vectors, where similar nodes are embedded close together in the vectorial space. Embeddings have
been shown to be valuable for handling numerous relations in a KG while efficiently exploiting
relation sparsity using vector computations. These optimized representations are subsequently
used to train downstream models for various tasks, such as predicting property values of specific
nodes (e.g., protein function), predicting links between nodes (e.g., binding affinity between
molecules and protein targets), or performing classification tasks (e.g., predicting the toxicity
profile of a candidate drug, or risk of readmission for a patient).

It is worth mentioning that among the existing works for life science knowledge discovery,
different kinds of KGs have been exploited. The schema-less KG can be used to model different
kinds of interaction between instances such as proteins and drugs; the taxonomy alike simple
ontology is often used to represent concepts and their hierarchy such as protein functions defined
in the gene ontology, chemical compounds, species, and diseases; expressive OWL ontologies
and schema-based KGs can be used to model complex logical relationships between concepts,
besides simple interaction between instances. Such diverse knowledge representation capabilities
make KGs more flexible in modeling the input data and prediction targets of different knowledge
discovery tasks, than graphs and tabular data that are widely used in previous pure machine
learning-based methods.

In the following, we present some typical use cases, where machine learning techniques (including
graph representation learning and language models) are applied over KGs built from diverse
sources and domain ontologies, to facilitate life science discovery.

4.1 What has been done: use cases and their recent developments

Therapeutics and Drug Discovery: Learning a representation using multi-modal
and heterogeneous knowledge. Drug discovery entails exploring an extremely large space
of potential drug candidates. AI can help to accelerate this process by narrowing down the
most promising candidates before expensive experimentation. The key to leveraging predictive
and generative models for candidate solution generation lies in learning an effective multi-modal
representation of protein targets, molecules and diseases among others. Recent research has focused
on applying language models over large databases of proteins or molecules for self-supervised
representation learning, such as ESM [148] and ProteinBERT [10] for protein sequences, or
Molformer for the molecule simplified molecular-input line-entry system (SMILES) [151]. These
models have exhibited remarkable success in tasks such as predicting protein interactions, binding
affinity between drugs and targets, and protein functions and structures. However, these existing
pre-trained sequence-based models often neglect to incorporate background knowledge from diverse
sources, for example, biological structural knowledge.
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Nonetheless, recent research indicates that incorporating existing expressive factual knowledge
can improve results in downstream machine learning tasks. To enhance Protein Language Models
(PLM), approaches such as OntoProtein [192] and KeAP [194] use a KG of protein sequences
augmented with textual annotations from the Gene Ontology (GO). OntoProtein was the first to
inject gene ontology descriptions into a PLM for sequences to predict protein interactions, function
and contact prediction. OntoProtein proposes to reconstruct masked amino acids while minimizing
the embedding distance between the contextual representation of proteins and associated knowledge
terms. Similarly, ProtST [186] uses a dataset of protein sequences augmented with textual property
descriptions from biomedical texts and jointly trains a PLM with a biomedical language model.

Knowledge Graphs are suitable data models for expressing heterogeneous knowledge and
facilitating end-to-end learning [181]. An entity in a KG can have multiple attributes with different
modalities - where each modality provides extra information about the entity - as well as relations
to and from entities in other sources. Graph Neural Networks (GNN) have been used to capture
inter-dependencies and diverse types of interactions between heterogeneous entity types and
multimodal attributes in KGs [100]. They achieve this by iteratively aggregating information from
neighboring nodes (through a process called message passing) and employing scoring functions to
optimize the learned embeddings for downstream tasks. Otter-Knowledge [100] incorporates a
heterogeneous KG (schema-based, containing concepts and their attributes) from diverse sources
and modalities, 7.e., each node has a particular mode that qualifies its type (text, image, protein
sequence, molecule, etc.) and initial embeddings for each node are computed based on their
modality. A GNN is then used to enrich protein and molecule representations and train a model
to produce final node embeddings. The model is able to produce representations for entities
that were not seen during training and achieve state-of-the-art results in the Therapeutic Data
Commons (TDC) benchmarks [73] for drug-target binding affinity prediction. TxGNN [72] uses
a GNN pre-trained on a large heterogeneous, multi-relational KG of diseases and therapeutic
candidates constructed from various knowledge bases. TxGNN obtains a signature vector for each
disease based on its neighboring proteins, exposure and other biomedical entities to compute a
disease similarity and predict drug indication/contraindication for poorly characterized diseases.

Protein Function Prediction with the Gene Ontology. Conducting physical experiments for
identifying protein functions is time and resource consuming. With the development of machine
learning, protein function prediction (which is the task of predicting a given protein with multiple
and potentially hierarchical classes — functions — defined in GO) has been widely investigated in
recent years [193, 171]. A large part of these works such as GOLabler [189] focus on exploring
feature extraction, feature ensemble, and automatic feature learning of the proteins. For example,
GOLabler [189] utilizes five kinds of different protein sequence information while DeepGraphGO
[188] builds a network of proteins and learns protein features via a Graph Neural Network. Recent
methods attempt to further exploit inter-function (class) relationships that are defined in GO for
better performance. For example, DeepGOZero [99] and HMI [185] use formal semantics including
the class hierarchy, class disjointness axioms and complex class restrictions in OWL as additional
constraints for training the multi-label classifier for protein function prediction. Protein function
prediction is a representative multi-label classification problem where complex relationships of the
labels are defined in a KG and can be used for performance augmentation. It is quite common in
machine learning applications in the life sciences, such as the above mentioned automated clinical
coding where the codes’ semantics are modeled by the ICD ontology, and ecotoxicological effect
prediction where the multiple affected species of a chemical to predict form a taxonomy.

Predictions for Healthcare using Ontologies with Clinical Data. Digital Healthcare
involves predictions using clinical data and ontologies, including diagnosis (e.g., rare diseases)
and procedure predictions (e.g., ICU readmissions). A related concept is personalized medicine,
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which is achieved through the matching and fusion of knowledge from diverse sources, and plays
a significant role in the prediction tasks. This often involves matching multiple ontologies [156],
integrating curated databases (e.g., pharmacogenomics, molecules and proteins knowledge bases),
mining knowledge from scientific literature [184] and person-centered clinical knowledge extracted
from EHR or claim data, with distinguishing risk factors or cohorts’ demographics (e.g., age
and gender), which could enhance predictions related to adverse effects [123] or rare diseases
for which there are not enough labeled datasets [2]. For example, SHEPHERD [2] incorporates
a multi-relational KG (extracted from PrimeKG [19]) of diseases, phenotypes and genes, and
leverages patient simulated data to discover novel connections between patients’ clinical, phenotype
and gene information to accelerate the diagnoses of rare diseases. Knowledge-guided learning is
achieved by training a GNN to represent each patient’s subgraphs of phenotypes in relation to
other gene, phenotype, and disease associations within the KG, such that embeddings are informed
by all of the existing biomedical knowledge captured in the network topology.

The approach in [15] constructs a KG (using expressive OWL ontologies) to predict ICU
(intensive care units) readmission risk by enriching EHR data with semantic annotations from
various biomedical ontologies in BioPortal. These predictions are based on KG embedding, such
as RDF2vec, OPA2vec, and TransE, and classical machine learning methods, such as Logistic
Regression, Random Forest, Naive Bayes and Support Vector Machines. Drawing from the Health
& Social Person-centric Ontology (HSPO) [165], which focuses on multiple clinical, social and
demographic facets for a patient or cohort, the approach presented in [166] builds a person-
centric KG (expressive OWL ontology with TBox and ABox) from structured and unstructured
data in EHR). Subsequently, a representation learning approach using GNNs is used to predict
readmissions to the ICU.

4.2 What are the challenges?

We present four of the open challenges to unlock the full potential of methods to advance knowledge
discovery for the life sciences using KGs, based on the use cases above.

How to incorporate the semantics from a KG in machine learning? Many life science
knowledge discovery tasks are modeled as a machine learning classification problem, whose input
and output labels have additional valuable information in one or multiple external KGs. The
challenge lies in extracting this information, optionally encoding it into vector representations,
and injecting that knowledge into machine learning and pre-trained language models. Doing
this effectively remains an important open challenge especially for protein-related pre-trained
language models [192, 186, 194]. Besides improving the accuracy in knowledge discovery,
injecting semantics from KGs can also contribute to making the model more explainable (see
Section 5), but to this end, much research is still required.

How to deal with the long-tail phenomenon in machine learning with KGs? In
machine learning classification for real-world life science knowledge discovery, the candidate
labels often exhibit a long-tailed distribution, i.e., a small ratio of them are common with a
large number of training samples available, while most of them are infrequent or even have
never appeared before. For example, imbalance in training data may occur for rare diseases
or adverse drug effects that affect only a small portion of the population [2, 72, 37]. KGs
sometimes have encoded the relationships of the labels, and could be used to help train the
model for predicting those long-tailed labels or enable the inference of such labels.

How to create an efficient multi-modal representation of knowledge to enable
discovery? Most current state-of-the-art methods build learned graph representations based on
isolated modalities. Multimodal KGs can explicitly capture labeled nodes and edges, each with
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well-defined meanings, across heterogeneous node types, relations and modalities (such as text,
images, protein sequences, molecules fingerprints, diseases and more) [19, 100]. Incorporating
KGs with multiple modalities for representation learning requires computationally scalable
methods to compute the initial embeddings for each modality, as a preliminary step to learn
computable representations of large knowledge. Furthermore, robust learning techniques are
needed for generalizing the learned representations to nodes with unseen or missing modalities,
thereby enabling the discovery of new knowledge. An example would be inferring properties of
proteins for which only the sequence is known.

How to efficiently utilize and fuse heterogeneous datasets, such as human-curated
domain knowledge bases, scientific literature and person-centered health records,
for knowledge discovery? State of the art shows that representations can be enhanced
by incorporating richer information available across different sources [72, 100, 156]. Bringing
in more data during training is needed to learn representations that can be applied to a
broader range of downstream prediction tasks. However, learning from large and diverse KGs
requires addressing challenges such as alignment, noise handling, balancing rich expressive
knowledge with scalability and dealing with knowledge inconsistency. Moreover, more robust
learning methods are needed for generalizing the learned representation to multiple downstream
tasks (e.g., knowledge-aware transfer, zero-shot and few-shot learning [22]). An important
aspect in this regard is addressing the disparity between all of the knowledge accessible during
pre-training and the knowledge accessible or relevant for downstream fine-tuning [72, 100].

5 Knowledge Graphs for Explainable Al

Machine Learning (ML) and Artificial Intelligence (AI) methods are widely employed to tackle
complex problems in many domains, including life sciences such as chemistry or biomedicine. Yet
many of those methods operate as a “black-box”, not enabling domain experts to understand
the reasoning behind their predictions [90]. This is a major concern, especially for applications
in areas with a potential impact on human lives, or areas with legally enforced accountability
or transparency [143]. Moreover, understanding the workings of AI methods is also crucial in
the context of scientific applications, such as those described in Section 4, where explaining the
prediction process can help elucidate natural phenomena [40].

One way to address this issue is to employ the methods of eXplainable Artificial Intelligence
(XAI). Although this is a topic long explored in the AI research community, there is still no
widely-accepted definition of explainability, with many terms being used interchangeably, such as
interpretability, comprehensibility, understandability and transparency [7]. Barredo et al. define
explainability as the ability of a model to make its functioning clearer to an audience [7]. A
slightly different definition is given in the previous survey [55]: “an interface between humans
and a decision maker that is at the same time both an accurate proxy of the decision maker
and comprehensible to humans”. Both definitions focus on the audience, for whom is the model
explainable, but the second suggests an explanation is another artifact produced by a model or
alongside the model.

There are two distinguishable audiences in the context of the life sciences: scientists (researchers)
and healthcare practitioners [167]. For the first group, the explanation is used as a guide to
understanding within life sciences research for scientific discovery. As a result, the explanation
may exist in a well-bounded context of a hypothesis or research project. On the other hand,
practitioners are involved directly in decisions with impact on healthcare. They need to consider
the output of the model in an open context, and sometimes also to explain the output to a patient
who is not a domain expert.
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A number of approaches for XAI emerge from the literature and broadly contain two parts:
(1) transparent box design, which includes algorithms such as decision trees, where models can be
directly interpreted by users and therefore an explanation of an output results in simply following
the decision paths that relate input to output; (2) post hoc interpretability, which provides an
explanation to a black-box model using additional methods such as probing, perturbing, or by
constructing surrogate models for general ML or AI methods [90, 167].

Utilization of KGs can greatly enhance XAI qualities as KGs are ideal for improving the model’s
interpretability, explainability, and understandability. Some methods are directly built around
KGs and thus take full advantage of them. Examples of those methods may include methods
that are using paths [161], predicting links, or performing reasoning [33]. Other methods can be
enhanced using the KG (e.g., [126]). Yet the enhancement effect greatly depends on the place
where KGs are employed and iteratively applied: pre-model (e.g., KG construction, potentially
multi-modal), in-model (e.g., integrating KG with machine learning models), and post-model (e.g.,
reviewing and updating KG by domain experts to be applied in the next iteration to enhance
machine learning models and their explanability) [143]. For example in in-model use, a model
can be pre-trained using a KG, and an example of a pre-trained language model is SapBERT
[108], which utilizes synonyms in the UMLS Metathesaurus to further pre-train a BERT language
model. This can not only be beneficial for performance [192], but can also potentially enhance
post-model explanation since the trained features are aligned with the KG [143].

5.1 What has been done: use cases and recent developments

Explainable AI for Healthcare Practice. The utilization of Al in healthcare practice raises the
concern of leaving life-critical decisions to black-box models [143, 167]. For example, in the field of
precision medicine which aims at tailoring drug treatments and dosages to each patient, clinicians
require more information from a model than a simple binary decision [7]. The interpretability and
explainability of AT models is thus an essential characteristic to make outputs understandable and
transparent. This would enforce both clinicians’ and patients’ trust in models by complementing
(and not substituting) clinicians’ explanations [20, 143, 167].

To illustrate, this direction has been envisioned for several healthcare scenarios. Explainable
AT models could support the experts in finding clinical trials that are appropriate based on patient
history [167]. Counterintuitive or unreliable predictions that could have serious consequences
could be explained, and thus prevented [167, 14, 90]. Some also envision such models to be used to
explain and debunk healthcare-related misinformation [143]. As aforementioned, it is noteworthy
that different kinds of explanations should be employed depending on the target audience, e.g.,
scientific explanations for evidence or trace-based explanations for treatment [20].

Explainable AI for Knowledge Discovery. As introduced in Section 4, KGs can support
knowledge discovery in life science, including the explainability of the process and the discovered
units. In this view, Ritoski and Paulheim [147] explain that ontologies, linked data, and KGs are
used in the interpretation step of a data mining process, e.g., for interpreting sequential patterns
in patient data [77], or to describe subgroups in a semantic subgroup discovery process [169].
KGs can also serve both as the basis for knowledge discovery processes and the interpretation
process. For example, Linked Open Data connecting drugs and adverse reactions can be analyzed
with Hidden Conditional Random Fields to predict adverse drug reactions, where the paths
from selected drugs to outcomes visually explain the prediction [87]. Similarly, Bresso et al. [12]
leverage features extracted from KGs (interpretable features such as paths, neighbors, path
patterns) and white box models (e.g., decision trees) to reproduce expert classifications of drugs
causing or not specific adverse drug reactions. The rules extracted from the decision trees contain
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features that provide explanations for the molecular mechanisms behind these adverse reactions
according to experts. Sousa et al. [159] employ KGs to explain both protein-protein interaction
predictions and gene-disease association predictions based on shared semantic aspects.

Explainable AI for KG Construction The final use case considers the situation that XAI is
applied to KGs themselves. We discussed the challenge to support human intervention in KG
construction in Section 3.4. Recent KG construction gradually relies on data-driven, deep learning
based methods to automatically induce knowledge from data. The deep learning models are
opaque, and thus the process requires explainability. The resulting KG may not be accountable to
be used for downstream applications. Trustworthy KG engineering is proposed in [191] to highlight
the importance of embedding explainable AT and human intervention in the KG life cycle. XAI
methods have been applied in many NLP related tasks (entity and relation extraction, entity
resolution, link prediction, etc.) in KG construction from texts. The XAI methods rely either on
feature-based explanations or knowledge-based explanations. While feature-based explanations
try to infer explanations from the data or the models’ interpretation of the data, knowledge-based
explanations aim to interpret the process with rules, reasoning paths, and structured contextual
information. Rules and paths have mainly been used for explanation, especially for link prediction,
a task comprehensively surveyed in [191].

5.2 What are the challenges?

How to integrate KGs for better X AI, especially with recent deep learning and
language model based methods? KG may provide better data provenance for the model
output. This can ensure explainability for communicating the model to domain experts in data
science applications [7]. In terms of recent generative LLMs, life science KGs, with careful
curation based on scientific publications, may help to provide provenance data to the answers
generated by LLMs. Studies need to understand to what extent, and how, LLMs can be applied
to induce knowledge (e.g., by probing LLMs with biomedical ontologies [65]), which then may
provide a foundation to create better approaches to integrate KGs with LLMs. Another area
is neuro-symbolic methods which may provide models that are inherently more interpretable
(see further discussions in Section 6.1). Also, regarding language models (especially LLMs),
they are capable of generating fluent texts, which can potentially serve as textual explanation
generators from symbolic knowledge for XAI. Meanwhile, a key issue is the hallucination of
LLMs, and KGs may support better prompting, fine-tuning and interpretable inference of
LLMs for higher decisiveness and trustworthiness [134].

How to evaluate XAI methods that involve KG? How to measure the quality of
explanations, to ensure they are corresponding to users? The majority (around 70%) of XAI
studies for KG construction do not evaluate the quality of the explanations or only informally
visualize or comment on a limited number of cases to show the intuitive outcome [191]. Also,
an XAI method needs to consider the target audience, as the explainability is to be finally
received by a group of humans [7]. For instance, only a small number of current approaches to

XAI for KG construction involve a user study, human evaluation or task-specific metrics [191].

Evaluating the quality of explanations requires some expert evaluation performed as ex-post
evaluation, and well-defined metrics are needed for this task. An example is in [57] to use a
combination of users’ scores for each predicted explanation in a KG link prediction task, where
there are multiple possible explanations. More expert validated and automated evaluation
methods and associated metrics are required for KG-related XAI.
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6 Discussion and Conclusion

In this work, we have summarized the recent developments of KG research in life science on three
important topics — KG Construction and Management, Life Science Knowledge Discovery, and
KG for XAI. While each topic has its specific challenges, there are some common challenges and
trends for the life science KG research in general.

6.1 Overall challenges and trends

Meanwhile, more scalable and efficient knowledge retrieval, query and reasoning systems, including
life science KGs and mapping repositories, are still worthy of investigation and development.

Evolution and Quality Assurance of KGs. KGs need to be updated as new data and
knowledge are emerging, and the schema and facts can easily become outdated or less useful for
existing applications in life sciences. In terms of KG construction, we discussed ontology extension
as a use case to address the evolution issue or emergence of new concepts and relations, and also
instance matching to extend new instances for the KG. Updating KGs is also a prerequisite for
life science knowledge discovery and knowledge discovery methods should be able to support the
evolution of KGs with e.g., the capabilities of continuous learning and zero-shot learning. Quality
assurance is another issue for KGs, including the tasks of knowledge error detection and correction,
knowledge completion, knowledge canonicalization, etc. On the one hand, more effective KG
quality assurance methods and systems should be developed, including schema and constraint
languages for quality verification and learning-based models for prediction (e.g., [24] combines
both for fact correction); on the other hand, knowledge discovery methods should be robust to
noisy KGs by investigating e.g., robust KG embeddings and multi-modal representation learning.

Heterogeneity in KGs: Multi-domain and Multi-modality. KGs contain heterogeneous
information, which brings challenges to their construction, representation, and reasoning. Different
schema and data in KGs can have different focuses in their scopes and domains. Integrating data
of different domains for building multi-domain KGs is difficult with challenges in e.g., ontology
and data matching. Besides, recent studies have explored integrating different modalities to
construct Multi-modal KGs [26, 122, 176], for instance text [133], images [179], etc. One challenge
to address is how to learn effective machine learning models over multi-modal KGs fused from
different sources (patients’ records, curated knowledge bases, and scientific literature) to support
scientific discovery as well as KG construction and management. Another challenge is developing
accurate and efficient knowledge representation approaches for texts and images in multi-modal
KG construction. For example, careful consideration should be given to when to simply use an
annotation property to associate an image with an entity, and when to use a property with specific
semantics to connect an image and an entity.

Human Interaction and Explainability with KGs. In KG construction, human experts
are required for many sub-tasks of KG construction and provide oversight [191]. In life science
knowledge discovery, human experts are necessary to finally validate the predicted new knowledge.
The whole process of interacting with KG in life sciences requires explainability, especially when sub-
symbolic models (e.g., pre-trained language models) are used. How to generate clear explanations
for human interaction and how to evaluate the quality of explanations remains a challenge, as
well as how to achieve consensus regarding scientific understanding with automatically discovered
knowledge when organizing knowledge in life science [129]. The recent growth of Neuro-Symbolic
methods suggests their support for explainability [89, 90, 150]. A recent survey [90] summarizes
XAT in bioinformatics with a chapter on knowledge-based explanations, whereas Karim [89,
Chapter 8] provides a neuro-symbolic framework for KG construction and utilization for medical
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experts’ decision making in the cancer domain. The approach presented in [150] is another
recent example of neuro-symbolic integration for image classification with KG-based XAI in the
cultural heritage domain.

Personalized and Customized KGs. A key challenge for KG construction is customization, as
we discussed in Section 3, to construct application-oriented KGs, where relevant sub-KGs have to
be extracted for large-scale KGs (a.k.a. modularization) and integrated with other knowledge and
data from different sources. Besides, many life science KGs are about individuals, e.g., patients in
healthcare applications, where Personal Health KG enables the integration of instance-level (or
patient-level) information and their computation is required [122]. An example is the Personal
Health KG in [21] that supports the dietary recommendation for users, where the construction
and population of the KG requires reusing and integrating existing ontologies, dietary guidelines,
and time-series patient data. The other examples of KGs integrating patients’ EHR data [166, 15]
are presented in Section 4.1. In personal KG construction, personal data should be protected. KG
scalability should also be considered in order to be used on small devices such as cellphones. This
is still a big challenge that has been rarely considered in using KGs in the life sciences.

Distributed KGs. The value of healthcare data for improving clinical knowledge and standard of
care and the potential of semantic technologies to further enhance it are well recognized. However,
a responsible use of healthcare data at the global level (beyond each healthcare provider and even
each country) must take into account both legal and ethical issues in data sharing, privacy and
security. Distributed knowledge graphs can mitigate these issues, by allowing for access control
and privacy protection. Furthermore, distributed knowledge graphs can also address the challenges
of scientific data ownership and stewardship by enabling the decentralized publishing of high
quality data. Several approaches for federated querying and embedding of knowledge graphs have
been proposed in recent years [25, 136, 157], however a wide adoption of semantic technologies in
healthcare is still lacking, with a proliferation of terminological standards and a disconnection
between data and meaning.

Representation Learning with KGs: Symbolic and Sub-symbolic Integration. Across the
topics and use cases, we see the importance of transforming symbolic knowledge into sub-symbolic
representations or combining both representations. The combination of both the neural and
the traditional symbolic representation methods leads to a trend in neural-symbolic approaches
in the field [11]. Recently, Pre-trained and Large Language Models provide new methods to
transfer self-supervised learning from a vast amount of corpora to support KG construction, e.g.,
OntoGPT [17] and OntoLAMA [65]. LLMs are especially good at representing texts of life science
publications in sub-symbolic spaces for semantic understanding. KGs may also provide a layer of
explainability by validating the output of LLMs. A recent survey [134] proposes a roadmap for
integrating LLMs and KGs. OntoProtein [192] is a recent example of how to integrate KGs into
the process of pre-training LLMs in the bioinformatic domain, thus achieving improved results on
protein-related knowledge discovery tasks. Also, geometry-informed representations of more formal
KGs, especially in hyperbolic spaces or using complex geometric structures, e.g., [18, 99], can
usually represent the structure of the KG with low dimensional vectors. Graph Neural Networks

may also support the encoding of KG structures in a more explainable way with logical rules [30].

6.2 Conclusion

Knowledge Graphs have become a popular and effective method to represent heterogeneous
concepts, relations, and data in life sciences. They require scalable solutions to represent and
reason with heterogeneous data and require constant updates. Throughout this work, we covered
the main topics and their corresponding use cases of KGs in multiple life science domains such as
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protein analysis, drug discovery, ecotoxicology, and healthcare, and summarized the corresponding
challenges. As new methods in knowledge representation appear, for instance the recent trends
of human-in-the-loop, sub-symbolic knowledge representations, pre-trained and large language
models, and neuro-symbolic integration, we envisage deeper applications of KGs to life science
processes, that support the construction of more applicable KGs and the discovery of more
reliable scientific knowledge, with explainability and human interaction better supported. KGs in
combination with other modern machine learning and natural language processing techniques will
become a foundation for Al for the life sciences.

Appendix A: Terms in Knowledge Graphs and Life Sciences

Below we provide a list of key terms used in this paper, as well as their definitions and explanations.
Note we mainly use the original sentences in the sources that are referenced as the definitions.

Description Logics: a family of knowledge representation languages that can be used to
represent knowledge of an application domain. DLs differ from their predecessors, such as semantic
networks and frames, in that they are equipped with logic-based semantics, the same semantics as
that of classical first-order logic. Most ontologies are implemented in OWL, whose semantics are
given by the Description Logic SROZQ. [5]

TBox and ABox: the two components of domain knowledge in Description Logics, i.e., a
terminological part called the TBox and an assertional part called the ABox, with the combination
of a TBox and an ABox being called a knowledge base (KB). The TBox represents knowledge
about the structure of the domain (similar to a database schema), while the ABox represents
knowledge about a concrete situation (similar to a database instance). [5]

Semantic Networks: a graph structure for representing knowledge in patterns of intercon-
nected nodes and arcs [160]. We use the term to denote a graph of concepts and relations without
formal semantics.

Gene Ontology: The Gene Ontology (GO) knowledgebase provides a comprehensive, struc-
tured, computer-accessible representation of gene function, for genes from any cellular organism
or virus [4, 28].

SNOMED-CT: Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT) is a
structured clinical vocabulary. It has a general and comprehensive coverage of clinical terms to
support electronic healthcare systems and clinical applications. [38, 27]

UMLS (UMLS Metahesaurus and UMLS Semantic Networks): Unified Medical
Language System (UMLS) is a repository of biomedical vocabularies developed by the US National
Library of Medicine. The UMLS is composed of three “knowledge sources”, a Metathesaurus,
a semantic network, and a lexicon. The UMLS Metathesaurus is a comprehensive effort for
integrating biomedical ontologies through mappings. The UMLS Semantic Networks define the
types or categories, or Semantic Types, of all Metathesaurus concepts and their relationships, or
Semantic Relations. [9, 27]

ChEBI: Chemical Entities of Biological Interest (ChEBI) is a database and ontology containing
information about chemical entities of biological interest. [62]

Symbolic vs. subsymbolic representations: Rooted in cognitive science, symbolic systems
of human cognition are related to the representation and manipulation of symbols; sub-symbolic
or connectionist systems are most generally associated with the metaphor of a neuron, e.g.,
perceptrons as an early system [94]. In terms of AI, symbolic systems contain logic-based and
knowledge representations, while subsymbolic systems typically contain neural networks and deep
learning based methods [41]. Neural language models and pre-trained language models [86] are
also classified under subsymbolic systems.
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Pre-trained and Large Language Models: Neural language modeling is the task of using
neural network approaches to predict words from prior their contexts in a sequence. Pre-training
is the process of learning some sort of representation (usually neural embedding based) of meaning
for words or sentences by processing very large amounts of text (or other data in a sequence
form, e.g., proteins and KG facts). This results in pre-trained language models. The dominating
architecture for neural language modeling is Transformer-based models, including BERT), its
domain specific versions, and later large variants, like the GPT series. The pre-trained language
models of very large sizes are recently coined Large Language Models (LLMs). [86]

Neuro-symbolic representations: refers to the integration of neural networks and symbolic
representations to design AI models that base their prediction on both data and knowledge. [41]
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