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Abstract. Ontology alignment is integral to achieving semantic inter-
operability as the number of available ontologies covering intersecting
domains is increasing. This paper proposes OWL2Vec4OA, an extension
of the ontology embedding system OWL2Vec*. While OWL2Vec* has
emerged as a powerful technique for ontology embedding, it currently
lacks a mechanism to tailor the embedding to the ontology alignment
task. OWL2Vec4OA incorporates edge confidence values from seed map-
pings to guide the random walk strategy. We present the theoretical
foundations, implementation details, and experimental evaluation of our
proposed extension, demonstrating its potential effectiveness for ontology
alignment tasks.
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1 Introduction

Knowledge graphs (and ontologies) are increasingly recognized as essential for
successful AI implementations across various data science applications [14]. On-
tology alignment is a crucial task to enable semantic interoperability and en-
hance the application of knowledge graphs. The ontology alignment process in-
volves finding and harmonizing semantic connections between different ontolo-
gies. While current methods have advanced ontology alignment considerably,
there remain obstacles to their widespread implementation [20,31].

The ontology matching community has contributed to the evolution of on-
tology alignment systems for the last twenty years with the organization of the
annual Ontology Alignment Evaluation Initiative (OAEI) [36,35]. In recent years
there has been a shift from traditional systems [11], using lexical and struc-
tural techniques, to systems using machine learning and (large) language models.
Prominent examples include LogMap-ML [5], BertMap [21], DeepAlignment [29],
VeeAlign [26], SORBETMatcher [15] and OLaLa [24]. The OAEI, with the new
Bio-ML track [23,22], has also evolved accordingly to attract and systematically
evaluate such systems.



Knowledge Graph Embeddings (KGE) techniques [42,38] aim at capturing,
in a low-dimensional continuous vector space, the structure and semantics of
the graph. These low-dimensional representations enable the application of ma-
chine learning algorithms to graph-structured data in downstream tasks such
as node classification, link prediction, or knowledge graph alignment [2]. Tra-
ditional KGE techniques commonly rely on one of the following: (i) geometric
transformations, (ii) matrix factorization methods, and (iii) neural networks.
Recent advancements in KGE have expanded to incorporate semantics beyond
relational facts. These include encoding textual literals and integrating logical
structures to capture richer semantic information within KG representations [6].

In this paper, we present OWL2Vec4OA, an extension of the ontology embed-
ding system OWL2Vec* [4] tailored to the ontology alignment task. OWL2Vec*
projects a given ontology into a graph, randomly walks over the graph to gener-
ate sequences of entities, and runs the language model Word2Vec [32] to generate
embeddings of both entity URIs and words. OWL2Vec4OA, unlike OWL2Vec*,
relies on potentially incomplete or inaccurate ontology alignments to bridge a
given set of input ontologies. When projecting the ontologies and performing
the random walks to create entity sequences, the confidence value of these seed
mapping are used to bias the random walks (i.e., edges with higher confidence
values will have higher chances to be visited). Hence, OWL2Vec4OA allows for
a tighter connection of the input ontologies given a set of seed mappings, while
giving preference to edges with higher confidence.4 OWL2Vec4OA currently relies
on the ontology matching systems LogMap [27] and AML [13] to produce seed
mappings.

Our experiments show that the embeddings computed by OWL2Vec4OA are
more suitable to the ontology alignment tasks than the original OWL2Vec* vec-
tors. OWL2Vec4OA embeddings also lead to promising ranking results in the
OAEI’s Bio-ML track by simply comparing the computed vectors between the
relevant source and target entities.

The rest of the paper is organised as follows. Section 2 introduces the nec-
essary notions behind OWL2Vec4OA. Section 3 presents relevant related work.
OWL2Vec4OA is described in detail in Section 4. Section 5 provide experimental
results of OWL2Vec4OA on the Bio-ML datasets. Finally, Section 6 concludes
the paper and discusses potential lines for future work.

2 Preliminaries

Ontologies and knowledge graphs. Ontologies serve as structured, clearly defined
representations of collectively agreed-upon concepts and relationships within a
specific field or area of interest [17]. Widely applied in information retrieval,
data integration, and knowledge-based systems, ontologies facilitate semantic
interoperability and reasoning across diverse applications. Knowledge graphs [25]
have recently gained attention to represent entities and relationships within a

4 Edges projected from ontology axioms are given the highest confidence.



Fig. 1. Fragment of an alignment between HeLiS and FoodOn (adapted from [5]). The
green dash arrow denotes mappings with confidence values ranging from [0,1]. Blue
arrows represent the inverse of the predicate rdfs:subClassOf.

graph-structured data model and have been very successful to improve search
functionality, tailor user experiences, and inform strategic business choices [14].
Nonetheless, from the Semantic Web point of view, in essence, ontologies and
knowledge graphs can be seen as equivalent notions (i.e., OWL ontologies provide
a formalization of the RDF graph data model [8], while knowledge graphs also
imply the existence of such formalization). In this paper, we use knowledge
graphs and ontologies interchangeably.

Ontology alignment is essential for data integration, semantic search, and cross-
ontological reasoning. Ontology alignment can be defined as the process of iden-
tifying semantic relationships between elements (such as classes, attributes, and
instances) of two or more ontologies. In this paper, we focus on atomic ontol-
ogy matching where the goal is to establish equivalence or subsumption among
atomic (i.e., named) entities in the input ontologies [11,33]. Mappings are typi-
cally represented as a 4-tuple ⟨e, e′, r, c⟩ where e and e′ are entities from different
ontologies; r is a semantic relation (e.g., equivalence or subsumption); and c is a
confidence value, usually, a real number within the interval (0 . . . 1]. For instance,
Figure 1 shows a fragment of an alignment between the ontologies HeLiS [10]
and FoodOn [9]. The alignment indicates that the concept HeLiS:Fructose
is similar to the concept obo:FOODON_03301305 (fructose) with a confidence
value of 0.9. Confidence values are typically provided by ontology alignment
systems and represent the degree of certainty associated with a correspondence
between entities. Alignment systems often employ sophisticated algorithms that
consider lexical similarities, structural relationships, and external knowledge
sources. Methods such as cross-referencing, semantic similarity measures, and
machine learning techniques can be applied to establish the mappings.



Fig. 2. General architecture of LogMap.

LogMap [27,28] is an efficient ontology alignment tool for large-scale ontologies
which employs lexical indexation, logic-based reasoning, and semantic similarity
computation in a multi-stage process. LogMap has demonstrated effectiveness
in various challenges and applications, especially in biomedicine. As shown in
Figure 2, LogMap produces as output three different mappings sets: (i) LogMap
overestimation are a large set of candidate mappings aiming for high recall while
representing a manageable subset of all possible mappings; (ii) LogMap anchors
are typicall a highly precise set of mappings; and (iii) LogMap mappings are the
final computed mappings aiming at a balanced Precision and Recall. These set
of mappings will be used in our experiments.

Random walks are key for embedding systems like RDF2Vec [37], OWL2Vec*
and node2vec [16] to capture the structural and contextual information of a
graph or network, so that the system can learn about the relationships between
different nodes and their local neighborhoods. The PageRank algorithm [30] rev-
olutionized web page ranking by employing a random walk model on the web’s
hyperlink structure. It simulates a “random surfer” traversing a graph of web
pages, computing page importance based on the probability of the surfer land-
ing on each page. This approach effectively captures the web’s complex link
topology to determine page significance, becoming a cornerstone in information
retrieval and influencing various fields beyond web search. Random walks allow
to process massive graphs without needing to consider all possible paths. Semi-
nal works like DeepWalk [34] and node2vec[16] utilize random walks to generate
node sequences for training embeddings, effectively capturing network topology.
Wei [43] proposed an extension of the Metropolis-Hastings algorithm for sam-
pling from large-scale networks, introducing strategies such as early rejection
and biased sampling. RDF2Vec [37] introduced random walk-based embeddings
for RDF knowledge graphs, later extended by Steenwinckel [39] with new walk
extraction strategies. Cochez et al. [7] also introduced biased walk strategies to
RDF2Vec with twelve different edge weighting functions.

OWL2Vec. Inspired by RDF2Vec [37], OWL2Vec* [4] was designed following
similar principles but adapted to create embeddings for OWL ontologies and to
take into account the lexical information of the ontologies (e.g., literals in the
form of labels and synonyms). Figure 3 depicts the architecture of OWL2Vec* for



Fig. 3. General architecture of OWL2Vec*

generating ontology embeddings. OWL2Vec* projects the input ontology into a
graph and generates entity sequences via random walks over the ontology graph,
then it generates different types of documents by substituting none, some, or
all entity URIs by its lexical representation. Finally, the word embedding model
Word2vec [32] is applied over the generated documents to compute embeddings
for both URIs and words. Note that URIs are unique and thus their embeddings
are contextual. OWL2Vec* has shown to outperform other approaches in intra-
ontology subsumption and class membership prediction when both structural
and lexical information was critical. OWL2Vec*, however, focuses on creating
embedding for a single ontology. Although a set of ontologies can also be given
as input, their graph representation will not be connected and thus the random
walks will not generate sequences involving elements from different ontologies.

3 Related Work

The ongoing research in the ontology matching community evidences the need for
more sophisticated techniques, as shown in the annual OAEI campaign [35] new
methodologies and systems are developed to address this challenging problem in
the Semantic Web. Otero-Cerdeira et al. [33] provides a comprehensive survey
of ontology matching techniques.

These diverse approaches demonstrate the complexity of ontology alignment
and the variety of techniques employed [12]. Nonetheless, ontology matching
tools can now process more efficiently even the most complex ontologies, includ-
ing those with hundreds of thousands of classes, encompassing billions of possi-
ble connections. Recent advancements in ontology matching have incorporated
machine learning, including embedding-based techniques and (large) language
models, showing promising results in improving alignment accuracy (e.g., [5],
[21]). These approaches leverage vector representations of ontological elements
to capture semantic relationships more effectively than traditional methods. By



utilizing language models or domain-specific embedding algorithms, these tech-
niques can identify nuanced similarities between concepts, potentially leading to
more accurate and comprehensive ontology alignments. This new generation of
systems can broadly be categorized into three categories. (i) Direct embedding
comparison: Methods like ERSOM [44] and DeepAlignment [29] calculate dis-
tances between concept embeddings directly. (ii) Supervised mapping classifiers:
VeeAlign [26], MEDTO [18], LogMap-ML [5], and SORBET [15] train classifiers
using concept embeddings as input. This approach adds a layer of learning spe-
cific to the OM task but still relies on independent embeddings for the input
ontologies. (iii) Based on language models: Recent methods such as BERTMap
[21], BERTSubs [3] and OLaLa [24] rely on language models to implement task-
specific models. For instance, BERTMap fine-tunes pre-trained language mod-
els (PLMs) using synonyms from the ontologies, while BERTSubs focuses on
subsumption mapping prediction using context-based information that is trans-
formed into text by templates.

Although systems based on language models have shown impressive results,
they rely on pre-trained or large language models adding an important com-
plexity layer for large matching tasks. Our approach OWL2Vec4OA leverages a
simpler language model like Word2Vec to create tailored embeddings for the
ontology matching task. Although Word2Vec does not create contextual embed-
dings (i.e., same string with different meanings will get the same embedding), the
sequences that OWL2Vec4OA creates include things (i.e., entity URIs) in addition
to strings, leading to contextual embeddings for the ontology entities as URIs
are unique. The embeddings are tailored to the matching task as OWL2Vec4OA
bridges the input ontologies with seed mappings computed by a (traditional)
alignment system like LogMap [27] and AML [13] before performing the random
walks to generate the URI and word sequences. Hence, unlike other approaches
like LogMap-ML, the computed embeddings for both ontologies are in the same
vector space and tightly related via the seed mappings.

Our evaluation uses the datasets of the OAEI’s Bio-ML track [23], specialized
benchmarks for evaluating machine learning-based OM systems. Currently, our
experiments focus on direct embedding comparison, as the main purpose of this
exercise was to evaluate the quality of the embeddings without any additional
layer. The reported results are promising. In the near future we also plan to
train a model with the computed embeddings similarly to LogMap-ML and the
approach presented by Hao et al. [19].

4 Ontology embeddings with OWL2Vec4OA

OWL2Vec4OA extends the OWL2Vec* system with a mechanism to tailor the em-
beddings to the ontology alignment task involving two or more input ontologies.
The main steps of our OWL2Vec4OA are depicted in Figure 4,5 and summarised
as follows.
5 Source codes of OWL2Vec4OA are available here: https://github.com/Sevinjt/

OWL2Vec4OA

https://github.com/Sevinjt/OWL2Vec4OA
https://github.com/Sevinjt/OWL2Vec4OA


Fig. 4. General architecture of OWL2Vec4OA

Ontology projection. We use the same ontology projection rules as in
OWL2Vec* [4]. The projection rules transform one or more ontology axioms
into RDF triples (i.e., labeled edges in the projected graph). Some axioms such
as class subsumption (e.g., obo:CHEBI_28757 (fructose) rdfs:subClassOf
obo:FOODON_03420108 (sugar)) and annotations (e.g., obo:FOODON_03420108
rdfs:label "sugar") have a one-to-one triple transformation; while more
complex axioms require the application of projection rules. For example, the ax-
iom obo:FOODON_03301391 (mushroom (canned)) rdfs:subClassOf
RO_0001000 (derives from) some FOODON_03411261 (fungus) is transformed
into the triple ⟨ obo:FOODON_03301391, RO_0001000, FOODON_03411261 ⟩.
A directed labeled graph for each of the input ontologies is returned as the output
of the projection.

Ontology alignment. OWL2Vec4OA currently relies on the traditional ontology
matching systems LogMap [27] and AML [13] to produce seed mappings. For ex-
ample, Figure 1 shows a subset of plausible mappings computed by an alignment
system. These seed mappings are used to bridge the ontology graphs and thus
enabling the execution of random walks over entities from different ontologies.
Note that, seed mappings do not need to be accurate nor complete and their
confidence values will be used to bias the random walks. As shown in Figure 2,
LogMap produces three sets of mappings of different quality that will be used
as seed: (i) an overestimation of potential mappings (LogMapover), (ii) highly
precise mappings or anchors (LogMapanch), and (iii) the regular output map-
pings (LogMapout). In addition, LogMapout mappings are combined with AML
mappings in our experiments (i.e., LogMapout ∪ AML, and LogMapout ∩ AML).



Input: Weighted graph G = (V,E, U,W ); seed entities S; walk depth wd;
iterations iter
Output: Walks or entity sequences W
W = {};
for k in range(iter) do

// iterates over the seed entities
for e in S do

current_walk = [ ];
Append uri(G, e) to current_walk;
current_size = 1;
focus = e;
while current_size < wd do

Extract set of outer edges Efocus from focus vertex;
if |Efocus| = 0 then

break;
end
// According to the probabilities of the edges in

Efocus as in Equation 1
Randomly select an outer edge l such that l = (focus, v) ∈ Efocus;
Append uri(G, l) to current_walk; // URI of the link
Append uri(G, v) to current_walk; // URI of the vertex
current_size++;
focus = v;

end
Add current_walk to W

end
end
return W ; // Set of walks/sequences.

Algorithm 1: Biased Random Walks Algorithm

Graph merger and Edge Weighting. Unlike our predecessor OWL2Vec*,
OWL2Vec4OA builds a single graph taking as input the graph projections of
the ontologies to be aligned and a set of seed mappings. Mappings (i.e., ⟨e,
e′, r, c⟩) have a direct graph representation as triples, for example, in Figure 1
the following mapping (r = equivalence) was identified ⟨ HeLiS:Fructose,
owl:equivalentClass, obo:FOODON_03301305 (fructose) ⟩ with confi-
dence c = 0.9. OWL2Vec4OA assigns a weight to each edge or link as follows: (i)
1.0 if the edge was derived from ontology axioms; and (ii) c if the edge was de-
rived from a mapping. The output is a labeled weighted graph G = (V,E,U,W ),
where E is the set of edges built from the projected RDF triples, V is the set
of vertices composed by the subjects and objects in these triples, U is the the
set of URIs associated to the vertices and edges, and W is the set of weights
associated to the edges. The function weight(G, l) returns the weight for a given
edge l, while the function uri(G, e) returns the URI of a given entity e.



Biased random walks. OWL2Vec4OA, inspired by Cochez et al. [7], implements
the biased random walker summarised in Algorithm 1. The algorithm takes as
input a weighted labeled graph G and a set of seed entities S and performs
(biased) random walks of depth wd starting from each of the seed entities. It
optionally iterates over the seed entities more than once to allow for different
walks for the same seed entity. In our setting, the seed entities represent the
entities involved in the seed mappings computed in the alignment step. This
way the walks are tailored to the alignment task, without the need of exploring
the whole input ontologies. The bias in the random walk takes into account the
weight assigned to each of the edges or links (l) in the graph G to assign a
probability to each of the potential paths. Given Eu = {li = (u, vi) with i =
1..n} and li an outer edge for u, the probability for each edge is computed as in
Equation 1.

Pr(lj = (u, vj)) =
weight(G, lj)∑n
i=1 weight(G, li)

(1)

For example, a walk of depth 3 starting from the seed entity HeLiS:Fructose
(i.e., an entity appearing in a mapping) could include the following sequence of
URIs: HeLiS:Fructose, owl:equivalentClass, obo:FOODON_03301305
(fructose), rdfs:subClassOf, obo:FOODON_03420108 (sugar).

Document generator and Word2Vec embeddings. OWL2Vec4OA, as in OWL2Vec*,
creates three types of documents from the generated walks W in the previous
step: (i) structure document, (ii) lexical document, and (iii) combined docu-
ment. The structure document is a direct representation of the walks as the
sentences are composed by entity URIs. The lexical document replaces every
URI occurrence in the walks by the respective lexical representation of the en-
tity (i.e., the occurrence of obo:FOODON_03420108 is replaced by its lexical
representation “sugar”, typically provided in the ontology via an rdfs:label
annotation). Finally, the combined document randomly replaces in each walk
some of the entity URI occurrences by its associated label. The three documents
are merged and used to train a Word2Vec model with the skip-gram architec-
ture. The trained Word2Vec model produces embeddings for both URI and word
occurrences in the merged document. As introduced in Section 2, the URI em-
beddings can be seen as contextual embeddings as URIs are unique.

5 Evaluation

We have performed a preliminary evaluation of the suitability of the embed-
dings computed by OWL2Vec4OA in ontology alignment tasks. Particularly we
have used the datasets provided by the OAEI’s 2023 Bio-ML track6. The Bio-
ML track included several tasks (e.g., OMIM-ORDO, NCIT-DOID, SNOMED-
NCIT-Pharm and SNOMED-NCI-Neoplas), involving biomedical ontologies with
6 Bio-ML Challenge [23]: https://krr-oxford.github.io/OAEI-Bio-ML/. Bio-ML 2023

Datasets: https://doi.org/10.5281/zenodo.8193375

https://krr-oxford.github.io/OAEI-Bio-ML/
https://doi.org/10.5281/zenodo.8193375


Table 1. OMIM-ORDO task with Walk depth 3, Walker iteration: iter=1 / iter=5.

Seed Mappings Hits@1 Hits@5 Hits@10 MRR
Train-Validation 0.01 / 0.01 0.02 / 0.02 0.05 / 0.05 0.04 / 0.04
LogMapover 0.27 / 0.28 0.51 / 0.53 0.60 / 0.62 0.38 / 0.40
LogMapanch 0.11 / 0.26 0.28 / 0.41 0.36 / 0.46 0.20 / 0.33
LogMapout 0.26 / 0.27 0.41 / 0.45 0.47 / 0.53 0.33 / 0.36
LogMapout ∪ AML 0.30 / 0.31 0.54 / 0.54 0.61 / 0.61 0.41 / 0.41
LogMapout ∩ AML 0.31 / 0.34 0.49 / 0.50 0.54 / 0.54 0.40 / 0.41

tens of thousands of classes, and reference alignments based on Mondo [41] and
UMLS [1].

Bio-ML presents two evaluation settings: global matching and local ranking.
Global matching is evaluated with the traditional measures Precision and Recall,
comparing a set of system-computed mappings with the reference set of map-
pings; while local matching evaluates the capacity of a system to rank a correct
mapping given a pool of potential candidates. Bio-ML uses Mean Reciprocal
Rank (MRR) and Hits@K (i.e., cases where the correct mapping was ranked
within the top-k) in the local matching setting.

Scoring function and settings. We have applied OWL2Vec4OA embeddings into
the local matching tasks of Bio-ML. Mappings are scored and ranked according
to the cosine similarity of the computed URI embeddings for the entities in the
mapping. We have computed OWL2Vec4OA embeddings for different walk depths
and iterations. We fixed the Word2Vec hyperparameters — the number of epochs
and embedding dimension to 70 and 100, respectively. The experiments were
conducted on a High-Performance Computing cluster with access to up to 48
CPUs, using the Slurm workload manager to ensure efficient resource allocation
and job scheduling. Generated resources are available in Zenodo [40].

Impact of seed mappings and number of iterations. Table 1 shows the results over
the OMIM-ORDO for different sets of seed mappings as introduced in Section 4.
We also used as seed the mappings provided as training and validation in Bio-
ML, as shown in the first row, using training-validation mappings in isolation did
not lead to promising results given their reduced size. The set of seed mappings
leading to the best results was the union of LogMapout and AML mappings,
with LogMapout ∩ AML and LogMapover leading to similar results. The results
also show that OWL2Vec4OA is also able to handle noisy set of seed mappings
like LogMapover. The impact of additional iterations over the seed entities did
not lead to a significantly increased performance.

Comparison with OWL2Vec*. Following the results in Table 1, we set LogMapout

∪ AML as the seed mappings and the number of iterations to 1 in the subse-
quent experiments. We experimented with walk depths ranging from 2 to 4. We
compared the performance of the embeddings computed with OWL2Vec4OA with



Table 2. Results of OWL2Vec4OA and OWL2Vec* over four Bio-ML tasks, with different
walk depths (wd).

Task System wd MRR Hits@1 Hits@5 Hits@10 Hits@20 Hits@30

OMIM-ORDO

OWL2Vec*

2 0.074 0.018 0.091 0.178 0.332 0.393
3 0.073 0.018 0.090 0.170 0.318 0.381
4 0.071 0.019 0.078 0.320 0.321 0.387

OWL2Vec4OA
2 0.586 0.533 0.637 0.657 0.672 0.693
3 0.402 0.306 0.512 0.587 0.650 0.685
4 0.215 0.132 0.281 0.359 0.446 0.532

NCIT-DOID

OWL2Vec*

2 0.218 0.110 0.306 0.448 0.631 0.746
3 0.175 0.074 0.251 0.377 0.561 0.690
4 0.105 0.035 0.121 0.225 0.409 0.541

OWL2Vec4OA
2 0.195 0.064 0.310 0.508 0.709 0.812
3 0.358 0.181 0.573 0.741 0.872 0.924
4 0.609 0.442 0.840 0.928 0.970 0.984

SNOMED-NCIT-N

OWL2Vec*

2 0.063 0.014 0.075 0.134 0.231 0.309
3 0.068 0.017 0.079 0.142 0.238 0.308
4 0.055 0.011 0.052 0.114 0.218 0.305

OWL2Vec4OA
2 0.648 0.543 0.767 0.831 0.888 0.904
3 0.605 0.484 0.746 0.813 0.872 0.899
4 0.805 0.747 0.872 0.888 0.902 0.910

SNOMED-NCIT-P

OWL2Vec*

2 0.079 0.018 0.094 0.184 0.302 0.675
3 0.078 0.018 0.092 0.181 0.292 0.667
4 0.055 0.011 0.052 0.114 0.218 0.305

OWL2Vec4OA
2 0.436 0.342 0.534 0.583 0.609 0.967
3 0.311 0.190 0.435 0.502 0.558 0.933
4 0.291 0.204 0.355 0.434 0.521 0.944

those computed with the original OWL2Vec* version (using its multi-ontology
setting). As expected, Table 2 shows that the ranking with OWL2Vec4OA em-
beddings considerably outperforms the ranking with OWL2Vec* embeddings in
all tasks and for all evaluated walk depths, indicating that the OWL2Vec4OA
embeddings are more suitable for ontology alignment tasks. The best results are
obtained for the task SNOMED-NCIT-Neoplas with walk depth 4 where Hits@1
reach more than 80% of the cases. In other tasks, the results are also promis-
ing indicating that the embeddings computed by OWL2Vec4OA capture relevant
features of the original entities that could be exploited by a subsequent machine
learning model.

Impact of the walk depth. Increasing the walk depths has a positive impact in
the tasks NCIT-DOID and SNOMED-NCIT-Neoplas; while for OMIM-ORDO
and SNOMED-NCIT-Pharm longer paths seem to add noise to the embeddings.
This is inline with the results obtained in the original OWL2Vec* paper [4] where
longer paths did not seem to lead to better results. It is worth mentioning that
longer paths also increase the computation times. In the near future, we plan to
perform an extended evaluation to better understand the impact of longer walks
on different ontologies and matching tasks.



6 Conclusions and Future Work

We have presented OWL2Vec4OA, an extension of the ontology embedding sys-
tem OWL2Vec* [4]. OWL2Vec4OA has been tailored to the ontology alignment
task by using a preliminary set of ontology alignments, possibly incomplete or
inaccurate, to bridge a given set of input ontologies. These seed mappings and
their confidence are key when performing biased random walks to create se-
quences of entities from both ontologies. The results section shows promising
results where the OWL2Vec4OA embeddings lead to much better-ranking results
than those computed by OWL2Vec*.

Currently, our experiments rely on direct embedding comparison which leads
to good similarity results. However, predicting equivalent or subsumption map-
pings is a more complex task. In the near future, we aim at training machine
learning models to better benefit from the features of the OWL2Vec4OA em-
beddings for an ontology alignment task. Prominent examples in the literature
are LogMap-ML [5], which successfully applied a Siamese Neural Network; and
Hao et al. [19], which explored the use of Graph Neural Networks (GNN). These
approaches, however, created embeddings that were independent for each input
ontology, unlike those computed by OWL2Vec4OA.

In addition, we also plan to conduct additional experiments to better un-
derstand the impact of the walk depth with different strategies to create entity
sequences (i.e., focusing on concepts and/or avoiding OWL constructs). Entity
embedding can also be constructed using the word embedding associated to their
labels, which may bring additional features with respect to the URI embeddings.
Finally, once we have an end-to-end ontology alignment system in place, we aim
to participate in the OAEI campaign and perform an extensive comparison with
the state-of-the-art.
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