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Abstract. Knowledge graphs feature ever more frequently as symbolic components in neurosymbolic research and systems.
But even though a central concern of neurosymbolic Al is to combine neural learning with symbolic reasoning, relatively little
neurosymbolic research focuses on leveraging the logical representation and reasoning capabilities of OWL-based knowledge
graphs. The objective of this position paper is to inspire more neurosymbolic researchers to embrace the OWL and the Semantic
Web by raising awareness of the benefits, capabilities, and applications of OWL-based knowledge graphs, particularly with
respect to logical reasoning. We describe the ecosystem of open W3C standards-based resources available that support the
adoption and use of OWL-based knowledge graphs; we describe tools that exist for engineering custom OWL ontologies tailored
to particular research needs; we discuss the encoding of background KG knowledge in subsymbolic embedding spaces and
various applications of this approach; we discuss and illustrate the reasoning capabilities of OWL-based knowledge graphs;
and we describe several promising directions for research that focus on leveraging these reasoning capabilities. We also discuss
the specialised resources needed to undertake research on OWL-based knowledge graphs in neurosymbolic systems. We use
the example of NeSy4VRD, an image dataset with a custom-designed companion OWL ontology. The scarcity of this kind of
resource should be addressed to accelerate research in this field.

Keywords: neurosymbolic, Al, deep learning, Semantic Web, OWL, ontologies, knowledge graphs, reasoning

1. Introduction

Following a long gestation spanning decades, neurosymbolic artificial intelligence (NeSy Al) has recently blos-
somed into a recognised subfield of AI. While neural and symbolic traditions of Al have been tribally rival, recently
there is a vibrant diversity of approaches blending the two [1]. Prompted by analysis of the limitations of deep
learning (in, e.g., [2-6]), and despite the recent advances resulting from scaling up deep learning, as evidenced in
large language models (LLMs), increasing numbers of researchers are drawn to NeSy Al The shared motivation is
to explore combinations of neural learning and symbolic knowledge representations in order to get the best of both
worlds, in a shared belief that this is the best route for advancing Al towards artificial general intelligence.

Knowledge graphs (KGs) are representations of symbolic knowledge that conform to a graph model, where
nodes are concepts and entities of interest, and edges are relationships between them [7, 8]. As NeSy research has
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expanded, so has the frequency with which KGs feature as symbolic components in hybrid, NeSy systems [9]. One
example of this is the progressively developing theme of ‘deep deductive reasoning’ [10—12], where neural networks
(NNs) are trained to reason over KGs. KGs have also been shown to be helpful when data samples are expensive,
difficult or impossible to obtain, such that there is a lack of data with which to train robust deep learning-based
systems, as in few-shot and zero-shot learning scenarios [13-15].

The Web Ontology Language (OWL) [16, 17] is a key component of the Semantic Web technology stack [18, 19].
OWL ontologies (semantic schemas enriched with logic that describe domain knowledge symbolically) govern Se-
mantic Web KGs by specifying what assertions of knowledge (types of triples) are admissible and inadmissible.
Inference semantics (ontological rules) associated with OWL constructs permit reasoning algorithms to reason over
OWL ontologies (and associated KG data, vast or tiny), both to infer new knowledge (new triples) and to enforce
logical consistency constraints. With suitable ontology design, inference can be used as prediction, and incremental
(on-the-fly) reasoning can facilitate real-time interaction. In summary, OWL-based KGs can be used as symbolic
deduction engines in NeSy systems. The NeSy system AlphaGeometry [20] combines an LLM with a symbolic
deduction engine (Horn clause geometry and algebra rules, plus inference algorithms) to solve geometry problems.
OWL-based KG technologies offer researchers the option to explore combining neural learning and symbolic rea-
soning in ways analogous to AlphaGeometry, by using OWL-based symbolic deduction during NN training and/or
inference.

Given that combining neural learning with symbolic reasoning is central to NeSy Al it is surprising how scant
the literature is that explores applications of OWL reasoning in NeSy systems. A systematic mapping study of
476 recent papers that combine Semantic Web technologies with machine learning [21] reports that only 29 (about
6%) mention using semantic processing modules of some kind (where, by ‘semantic’, the study means symbolic
knowledge representation). The dominant use cases for such modules relate to rulesets (learning them, improving,
and applying them) and to data enrichment. The study also finds that of these 29 papers, only 20 (about 4% of the
total) mention using reasoning capabilities to infer knowledge. We consulted that study’s companion Semantic Web
and machine learning systems knowledge graph resource, SWeMLS-KG [22], to find those 4% of papers. Of the 17
we identified, we found only 5 to use OWL reasoning. Another recent survey and vision paper [23] reviews the role
of KGs in machine learning, pointing out gaps and opportunities, and also observes that KG symbolic reasoning
methods are under-explored and largely disregarded.

One factor explaining this under-exploration may be the cross-disciplinary nature of the endeavour. NeSy research
with OWL-based KG reasoning requires researchers to be familiar not just with deep learning, KGs, and logic, but
with Semantic Web technologies, especially OWL ontologies, as well. The authors of [23] point to the prevalence
of huge public KGs and to the perceived scalability limitations of symbolic reasoning methods in the face of such
large KGs as an explanation. A third factor may be that the possibility of using OWL-based KG technologies to
tailor symbolic deduction engines for NeSy systems has been under-recognised. After all, the Semantic Web was
not conceived with such applications in mind.

The objective of this paper (which builds on [24]) is to argue the case for NeSy Al research using OWL-based
KGs. We hope to inspire more NeSy research using OWL-based KGs by raising awareness of their benefits, capabil-
ities, and flexible applications, especially with respect to reasoning. OWL-based KGs are exemplars of the symbolic
knowledge representation and symbol manipulation and reasoning machinery that critiques of deep learning, such as
in [2-6], advocate be incorporated in NeSy systems. By drawing upon illustrative examples from our own research
in visual relationship detection as well as from the literature, and by describing promising research directions, we
hope to convince readers of the potential of OWL-based KGs. We also discuss how to enable more NeSy research
using OWL-based KGs through the creation of resources such as the recently contributed NeSy4VRD (Neurosym-
bolic Al for Visual Relationship Detection). NeSy4VRD represents one step towards addressing the scarcity of the
specialised resources required for NeSy Al research using OWL-based KGs: resources that combine datasets for
neural learning with companion OWL ontologies that describe the domain of the data in order to support pertinent
symbolic reasoning.



2. Benefits and capabilities of OWL-based KGs

In this section, we describe benefits and capabilities of OWL-based KGs. We illustrate capabilities by giving
examples showing how and why OWL-based KGs can be utilised in NeSy systems.

2.1. Open standards and reusable resources

OWL (the Web Ontology Language) is a key component of the W3C open standards ecosystem of the Semantic
Web (SW) [18, 19, 25, 26]. Open standards facilitate interoperability and promote development of reusable, often
free, software resources that make it easy to work with OWL ontologies and OWL-based KGs. Amongst the many
such resources are: (i) public SW KGs like DBpedia [27], Wikidata [28] and Yago [29]; (ii) public repositories of
curated OWL ontologies like BioPortal [30] and OBO Foundry [31] in the biomedical domain; (iii) RDF stores
like GraphDB (it is not open, but it has a free version) [32] and RDFox (it is not open, but it has a free academic
license) [33]; and (iv) efficient OWL reasoners like HermiT [34], Pellet [35], RDFox, and ELK [36].

2.2. Custom ontologies and custom KGs

Reusing state-of-the-art ontologies and/or public KGs is a ‘good practice’ option. But researchers can also design
their own custom, domain-specific OWL ontologies tailored to their datasets and unique needs. They can then use
these to govern and enable reasoning within custom OWL-based KGs. Custom ontologies can also be aligned with
publicly available ontologies to enhance interoperability [37].

This custom approach is the one taken in our research into visual relationship detection in images, for which we
designed a custom OWL ontology called VRD-World [38]. This ontology describes the domain of the everyday
images of the VRD dataset [39], as reflected in the object classes and relationships referred to in the (subject,
predicate, object) visual relationships annotated for the images. As depicted in Figure 1, the VRD-World
ontology can govern a custom OWL-based KG in the hybrid NeSy systems with which we explore using sym-
bolic reasoning to guide neural learning. While designing the VRD-World ontology, guidance was taken from the
large literature on ontology engineering [e.g., 40-43]. The ontology was specified using the free ontology editor
Protégé [44], taking advantage of free Protégé plug-in utilities designed to support ontology development, such as
ontology debuggers. Many machine learning tools exist to support various different aspects of ontology development
such as, for example, concept learners (see [45]).

We designed two versions of a class hierarchy for use with our VRD-World ontology. Both hierarchies contain
classes that map to the broad range of everyday object classes present in the images and annotations of the VRD
dataset (e.g., person, dog, jacket, surfboard, etc.). The design of one version is entirely custom, and the
dataset classes feature exclusively as leaf nodes in the hierarchy. The design of the other version was inspired by
Wikidata [28]. We first aligned the dataset classes with matching classes present in the Wikidata class hierarchy.
Then, for each such class, we selected a small number of subsumption paths (leading from that class upwards to the
top-most class) from the Wikidata hierarchy for inclusion in our class hierarchy. The result is a class hierarchy that
is a faithful, tractable subset of the vast Wikidata class hierarchy.

2.3. KG embeddings, KG completion and knowledge injection

KGs (of all kinds) have inspired a large amount of NeSy research into encoding KG symbolic background knowl-
edge into vectors as KG embeddings. The embeddings preserve semantic similarity and reflect this similarity by
proximity within the embedding vector space [45-50]. The primary application area of KG embeddings so far has
been tasks relating to KG completion: link prediction (relating individuals in a KG) or type prediction (classifying
individuals in a KG). Regardless of the model used to generate the embeddings (of which there are many), these link
and type prediction problems are typically cast as neural classification problems, where the embedded KG knowl-
edge is used for training and where methods exploiting the proximity principle are applied (as a form of geometric
inference) to help make predictions.
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Fig. 1. An example neurosymbolic system architecture for detecting visual relationships in images. By using an OWL-based knowledge graph
with an appropriate ontology as a symbolic deduction engine, feedback from OWL reasoning can influence loss to guide neural learning.

Like all KGs, OWL-based KGs are readily used in NeSy research that leverages KG embeddings. OWL2Vec* [51]
is one embedding model designed for this purpose. Notice, though, that these applications of KG embeddings focus
on leveraging KG symbolic background knowledge only. So even if the KG in question is OWL-based, its reasoning
capabilities are generally not employed in these applications.

Link inference and type inference performed by logical reasoning are, however, the bread and butter of OWL
reasoners. When an OWL reasoner infers the knowledge that is entailed by the inference semantics of a governing
OWL ontology in the presence of KG data, it completes the KG by introducing new, explicit (knowledge) triples
that were previously implicit. This process is called materialisation. The logical soundness of these inferences
is guaranteed, whereas embedding-based KG completion is approximate and potentially error prone. The extent
to which the KG is extended (completed) is commensurate with the richness of the inference semantics of the
governing ontology and the nature of the KG data present at the time of materialisation. Our point is that OWL-
based KGs can add important value in any NeSy task associated with KG completion. OWL reasoning can be used
to complete a KG automatically, as far as possible, and then NeSy KG completion (NN emulated reasoning) can be
used for special cases that the OWL ontology in question does not address or that OWL cannot address in general.

As discussed in [52], the phrase ‘knowledge injection’ is used with different meanings. It can be used to refer
to the injection of knowledge in symbolic form, such as in Logic Tensor Networks (LTN) [53, 54], with its Real
Logic axioms that are woven into loss functions. It can also refer to the injection of knowledge represented in
subsymbolic form, e.g., as embeddings. One subcategory of subsymbolic knowledge injection involves the use of
KG embeddings (e.g., [55]) as domain knowledge supplements to primary training data. The hypothesis here is that
‘data + knowledge’ can enhance deep learning. This is what the authors of [56] mean when they speak of knowledge
injection. In [57] this approach is called knowledge-infused learning. Much of the research in this area focuses
on language models. Using KG entity linking techniques, concepts and entities mentioned in text are matched
with corresponding KG entities. The (pre-computed) embeddings of matched KG entities are then looked-up and
injected into language models (typically during fine-tuning), often deep within transformer self-attention blocks.
For example, [58-61] explore variations on this theme and all report performance improvements from injecting KG
embeddings as background knowledge.

The efficacy of this approach to KG knowledge injection has come into question, however. Having examined
several established language model knowledge injection frameworks and repeated the published experiments, the
authors of [56] conclude that whatever is injected has an effect indistinguishable from that of Gaussian noise.
They surmise that fine-tuning does not permit pre-trained language models sufficient opportunity to disentangle and
assimilate the latent knowledge in the injected KG embeddings.

We suspect that the prevailing paradigm of matching text to KG entities, and injecting the corresponding embed-
dings, may limit the use of KG knowledge. KGs express knowledge relationally and KG embedding spaces attempt
to represent that relational knowledge subsymbolically. The knowledge is implicit in the relations between pairs
and clusters of vectors in the embedding space, and in how clusters are distributed across the space. There may be
little usable knowledge residing in individual embeddings considered in isolation (i.e., single points in space). Dis-
cordance between heterogeneous text and KG embedding spaces may also be a factor contributing to the findings



in [56]. We suggest that new paradigms crafted to facilitate the harvesting and injection of relational knowledge
warrant exploration.

Advances in subsymbolic KG knowledge injection will in part be driven by advances in KG embedding models.
As discussed in papers such as [23, 62, 63], KG embedding models currently capture only a portion of the rich
semantics of OWL ontologies. Some embedding models focus on capturing lexical and syntactic patterns such as
entity/word correlations; others focus on capturing aspects of logical relationships such as hierarchical structure;
integrating numeric literals remains a challenge. Research into methods that can embed more of OWL’s logical
expressiveness and logical relationships, and that can embed the multiple aspects mentioned here jointly, remains
preliminary (e.g., [64]).

With any application of KG embeddings—KG completion, knowledge injection deep into NN, or otherwise—
the reasoning capabilities of OWL-based KGs may potentially add important value. It seems intuitive that fully
materialised OWL-based KGs, where everything implicit has been made explicit, contain more embeddable knowl-
edge and should lead to embedding spaces that better reflect the totalities of symbolic domain knowledge entailed
by KGs. However, more embeddable knowledge (more triples) does not necessarily lead to better performance in
downstream tasks that consume KG embeddings. Studies such as [65] show that downstream performance may
degrade. Nevertheless, the authors of [23] share this intuition and call for extensive research to study the potential
of materialised KGs in KG embeddings, so that guidance can evolve around whether, when, and why to use KG
materialisation.

2.4. OWL-based KG reasoning, rules, and symbolic deduction engines

Despite recent successes, large language models are notorious for their lack of reliability in reasoning. In contrast,
the reliability of OWL reasoning is guaranteed because it is grounded in formal Description Logics (DLs). DLs are
decidable fragments of first-order logic with strong connections to set theory [66—69]. A prominent example is
SROIQ [70], the highly expressive DL that underlies that latest version of OWL, OWL 2.

OWL reasoning falls into two broad categories. One category involves the inference of new knowledge, where
entailed but implicit triples are made explicit by materialising them (inserting them into the KG). The other category
involves checking the logical consistency of ontologies and KGs. Both categories rely on logical inference rules,
but whereas the rules of the former category have logical consequents, the rules of the latter category do not.
Both categories of reasoning are commonly used for debugging during OWL ontology development [8, 71]. What
appears to be less well recognised is that both categories of OWL reasoning can also be leveraged in NeSy systems.
Some RDF triple stores (like GraphDB and RDFox) do their OWL reasoning as each triple is inserted into the
KG. This has important implications for the feasibility of integrating OWL-based KG reasoning into NeSy systems.
New knowledge that is entailed by the insertion of a triple (or a small set of triples) is immediately available for
inspection, and triple insertion attempts that violate logical consistency rules are immediately rejected (so as to
maintain the overall logical consistency of the KG). Both types of response (or feedback) provide information
that can be leveraged in the context of hybrid NeSy systems. As is depicted in Figure 1, such OWL-based KG
technologies can be used to assemble symbolic deduction engines that perform domain-specific and system-specific
OWL reasoning on-call and on-the-fly. Figure 1 shows feedback from on-the-fly OWL-based KG reasoning being
used to guide neural learning by influencing the calculation of loss.

Depending on the application, the KGs of such symbolic deduction engines may need to contain only minimal
data at any one moment. As long as a governing OWL ontology is present, fast OWL reasoning can proceed against
small numbers of inserted data triples, and these might be deleted just as rapidly once the momentary reasoning
service has been performed and the feedback delivered. OWL reasoning in such symbolic deduction engines can be
leveraged not just during NN training but during inference as well. For instance, predictions of visual relationships
generated at inference time can be inserted into a KG in order to verify their semantic validity. Ones found to be
semantically invalid (i.e., that lead to logical inconsistency) can be filtered from the set of predictions.

Before we discuss examples of NeSy systems found in the literature that use OWL reasoning, we first review
some basic OWL reasoning examples. Link inference is driven mainly by the inference semantics associated with



the characteristics (e.g., symmetry, transitivity) and relationships (e.g., inverses, subproperties, equivalent proper-
ties) declared for the object properties of an OWL ontology. Suppose a property beside is declared to be sym-
metric, and a property over is declared to have as inverse the property under. In this case, given triples (a,
beside, b) and (c, over, d), OWL reasoning infers (b, beside, a) and (d, under, c). Type
inference (subsumption reasoning) is driven mainly by the class hierarchy of an ontology through the transitive
property rdfs:subClassOf. If the ontology declares (E, rdfs:subClassOf, F) and data asserts (e,
rdf:type, E), OWL reasoning infers (e, rdf:type, F).

The authors of [72] leverage OWL type inference in a more elaborate way such that a tutoring system can
react intelligently in response to interactions with human learners. A custom OWL ontology models the tutor-
ing system domain and contains descriptions of classes that correspond to tutoring system actions. Data regard-
ing learner interactions with the system are progressively loaded into the system’s KG. The OWL reasoner Her-
miT reasons over the KG to infer new knowledge based on the learner interaction data. In the process, each
learner interaction is classified as belonging to one of the tutoring action classes, resulting in inferred triples such
as, say, (learnerX-interactionN, rdf:type, GiveEncouragement). The inferred classification
triples are interpreted as predictions of the best next action for the tutoring system to take. The mechanism works
because OWL allows a class (concept) to be described in terms of the characteristics possessed by the members of
the class. This class description capability is a defining feature of Description Logics.

OWL reasoning can be extended by accompanying OWL ontologies with complementary rules. Such rules are
constructed with reference to the classes and properties defined in the ontology, and they typically infer new knowl-
edge (new triples). Various rule technologies for extending OWL exist, such as SPARQL rules [73], SWRL (Se-
mantic Web Rule Language) rules [74], and (more commonly, today) Datalog rules [75-77].

One example in the literature, [78], uses a custom OWL ontology that describes dietary and physical activity
domains and healthy lifestyle behaviours, supplemented with SPARQL rules representing unhealthy lifestyle be-
haviours, in a digital healthcare NeSy system. User diet and activity data are loaded into the system’s KG. The
RDFpro tool [79] drives the reasoning and rule execution. If a SPARQL rule is satisfied, an unhealthy behaviour has
been detected, and the rule infers (creates) instances of rule violations in the KG. The rule violations are then ren-
dered into natural language to encourage healthier user behaviours. The authors of [80] use a custom OWL ontology
supplemented with SWRL rules as part of a system for monitoring vineyards. Data gathered by a wireless sensor
network measuring micro climate conditions around a vineyard are funnelled into the system’s KG. The Pellet OWL
reasoner reasons over the KG to infer new triples that are interpreted as predictions of risk of particular diseases and
pests. The authors of [81] use a custom OWL ontology supplemented with SWRL rules as part of a NeSy system
for recognising surgical processes for robot-assisted surgery. A CNN recognises the current surgical workflow step;
an LSTM RNN predicts the next surgical workflow step; and by reasoning over these inputs in the presence of the
ontology and SWRL rules, the Pellet OWL reasoner infers supplementary surgical context information, such as the
surgical phase, surgical instruments used, and actions to be taken.

The basis of the logical knowledge representation formalism for combining OWL ontologies with Datalog rules
is defined in [82]. This formalism permits rules that refer to ontology vocabulary to be layered on top of ontologies,
and it permits logic programming algorithms to reason efficiently over large ontologies. In the VRD dataset setting,
a Datalog-like rule describing when it is reasonable to infer the visual relationship (x, wear, y) might be
represented as

wear (x,y) := WearCapableThing(x), WearableThing(y), ir(y,x) > 0.8

In the body of this rule, the first two conditions rely on leveraging OWL type inference; the third condition extends
OWL’s capabilities by evaluating the spatial relationship between the bounding boxes of the two objects. Suppose an
object detection NN predicts (x, rdf:type, Dog) and (y, rdf:type, Jacket).OWL reasoning will
infer the membership of these individuals in all of the parent classes of Dog and Jacket and, in so doing, deter-
mine whether or not (x, rdf:type, WearCapableThing) and (y, rdf:type, WearableThing).
If both of these conditions are satisfied, and the bounding box for y is mostly enclosed within the bounding box
for x (as measured by function ir () ), then the body of the Datalog rule is satisfied and the visual relationship in
the head of the rule is inferred: (x, wear, y). We intend to explore the effect of such rules using tools such
as RDFox, which translates OWL axioms into Datalog rules and performs all of its OWL reasoning using Datalog



reasoning algorithms. This allows for seamless blending of reasoning over the OWL 2 RL profile with reasoning
over supplementary Datalog rules that extend OWL reasoning.

3. Promising research directions

In this section we describe some application areas where the potential for leveraging OWL-based KGs and OWL
reasoning in NeSy systems looks promising.

3.1. Using OWL reasoning to enhance annotations and strengthen weak labelling

OWL reasoning has been used to enhance annotations. The authors of [83] use a small ontology crafted using a
fuzzy DL, and a reasoning engine that uses a tableaux algorithm for doing SHOIQ DL reasoning (which is virtually
OWL reasoning), to semantically enhance the annotations of images. Their knowledge-based framework detects
(infers) what they call implicit, ‘semantic context’ concepts. For example, the co-occurrence of ‘sea’ and ‘tree’ in
an image might lead to the inference of the context concept ‘beach’, which enhances the semantic interpretation of
the image. The authors of [84] use a custom OWL ontology (based on a subset of WordNet), supplemented with
SWRL rules (learned from data), to enhance video annotations. The SWRL rules infer instances of new, higher-level,
composite concepts relevant to videos. For example, a video containing furniture, lamps, computers, etc., might be
inferred to be ‘indoors’.

The VRD dataset we use in our research has weak labelling in the sense that its images are not exhaustively
annotated, either in terms of objects or relationships. The visual relationship annotations of its images are sparse
and arbitrary, and hence the supervision they provide during NN training is partial and inconsistent across images.
OWL reasoning can mitigate weak labelling by augmenting it and making it more consistent. The properties of our
VRD-World ontology (which correspond to predicates in annotated visual relationships) are rich in characteristics
and relationships that carry inference semantics for link prediction (see Section 2.4). Our experiments with OWL
reasoning over VRD-World have shown that the average number of annotated visual relationships per VRD training
image increases by a factor of 2.5. Supplementing the ontology with Datalog rules that extend OWL reasoning is
expected to yield further augmentation.

The augmentation of the ground-truth annotations for each image could, in theory, be performed in real-time
within a NN training loop, but the same reasoning and augmentation would be performed repeatedly, each time
each image is re-encountered in successive training epochs. So, in our case, it is more efficient computationally
to do the annotation augmentation once, upfront, by materialising a KG containing the annotations of all images
and saving the augmented annotations to a file. But the option of using OWL reasoning to perform annotation
augmentation on-the-fly, is worthy of note because settings may arise where this facility is advantageous. Either
way, augmented, denser and more consistent annotations are likely to provide a less noisy loss signal for neural
learning.

The examples just discussed share the notion of using OWL reasoning to infer plausible annotations in the absence
of explicit annotations. This notion has broad application. Within supervised learning, it may apply to many datasets
(like the VRD dataset) that are not exhaustively annotated. It is also relevant in semi-supervised learning (where
some examples are labelled, others not), and potentially in unsupervised learning problems as well. Further, the
notion of inferring plausible annotations may be valuable in k-shot learning scenarios, supervised or otherwise.
For example, in the VRD dataset, zero-shot cases arise where objects and relationships that conform to particular
visual relationship types, e.g., (person, ride, elephant), are present in both training and test images,
but where only the test instances have been given ground-truth visual relationship annotations. If, during training,
OWL reasoning infers that predictions of such relationships are plausible, then, despite the absence of ground-truth
annotations attesting to their validity, we can avoid penalising loss for such predictions and thereby (hopefully)
increase the likelihood that the trained NN will predict such relationships when it encounters them in test images.



3.2. Enabling neural networks to emulate OWL reasoning

One approach to NeSy Al involves introducing structural extensions to NN architectures and injecting background
knowledge as strong priors in weight matrices. An example of this approach is [85]. As part of our research, we
have begun to explore this approach to NeSy Al by considering the feasibility of transferring OWL-based KG
knowledge to NN (or otherwise equipping them) so that they might emulate aspects of OWL reasoning. One idea
involves representing the transitive closure of an OWL ontology class hierarchy (as inferred by OWL reasoning)
as a binary adjacency matrix (per graph theory) that can be injected into a classification NN as the weight matrix
of a supplementary classification output layer. A proof of concept exercise indicates that this tactic should permit
a classifier to emulate the subsumption reasoning (type inference) capabilities of an OWL-based KG. For example,
suppose a NN classifier that initially classifies a data sample x as being a Dog. The structural extension (i.e., the
additional classification layer) could then generalise (or pseudo-infer) that x is thus also a Carnivore, aMammal,
an Animal, a LivingThing, etc., just as would an OWL reasoner in an OWL-based KG governed by the same
ontology, were the triple (x, rdf:type, Dog) inserted.

The potential for leveraging cross-over synergies such as this between OWL-based KGs and NN is ripe for
exploration and development. One avenue for investigation might involve adding more learnable layers to a classifier
following the class generalisation extension layer just described so that learning might proceed driven by generalised
class predictions. Another option might be to extend the solution just described for generalising multi-class, single-
label predictions to the multi-class, multi-label setting. A further option is to apply this technique for transferring
OWL class hierarchy knowledge to a NN to the transference of OWL property hierarchy knowledge to a NN. Our
Predicate Prediction NN (in Figure 1), for example, predicts predicates (which map to OWL properties) that relate
two objects. The VRD-World ontology declares that property sitUnder is a subproperty of under, and that
under is a subproperty of below. If a NN prediction (x, sitUnder, y) is inserted into an OWL-based
KG governed by VRD-World, OWL reasoning will infer triples (visual relationships) (x, under, y) and (x,
below, vy).Butan adjacency matrix encoding the transitive closure of the VRD-World object property hierarchy
should enable a NN to make these two generalised visual relationship predictions for itself.

3.3. Using OWL reasoning for applying logical constraints

Much NeSy research explores using background knowledge expressed in first-order logic, propositional logic,
or logic programming as constraints to guide neural learning, often by manipulating loss to encourage constraint
satisfaction. Examples are (i) the NN training framework LTN which allows fuzzy, first-order Real Logic knowledge
axioms (constraints) to be defined over training data; (ii) the set of propositional logic constraints specified for the
ROAD-R dataset [86]; and (iii) the (Prolog) rules defined in [87]. OWL-based KG technologies can be used for the
same purpose. Recall from Section 2.4 that OWL reasoning spans two categories of logical inference, one which
infers new knowledge and one which checks for logical consistency. Both categories of inference can be leveraged
to enable OWL-based KGs to participate in research associated with the logical constraints approach to NeSy Al.

First we consider the latter category. We assume a context of on-the-fly OWL reasoning, which permits logical
consistency checks to be applied at the point of triple insertion. In this setting, OWL’s logical consistency inference
rules can be leveraged as though they were logical constraints. If an OWL-based KG rejects the insertion of a
triple, this event signals a violation of a consistency rule and therefore the violation of some logical constraint.
Such events can thus be used to penalise loss. The number and nature of the logical constraints covered by OWL’s
logical consistency rules varies with the design of the OWL ontology. If one opts to design a custom ontology, one
can arrange for specific logical constraints to exist that will be covered automatically by OWL’s logical consistency
checks, much like one might craft a logic program with specific inference intentions in mind. For a given rejection
event, it may be feasible to surmise which logical constraint was violated based upon knowledge of the ontology’s
design and of the triple(s) that triggered the violation. Alternatively, the OWL reasoner Pellet provides explanations
for logical inconsistencies to an extent. The Protégé editor also has facilities and plug-ins that provide explanations
for detected ontology inconsistencies.

As a concrete example, we discuss the use of domain and range restrictions as logical constraints in connection
with the VRD dataset. We describe how these have been used in the context of LTN and then compare that approach



with how they can be used in OWL ontologies. In [88], negative domain and negative range LTN Real Logic axioms
(constraints) are used to train binary classifiers for the predicates of the VRD dataset. The VRD dataset has 100
object classes, so to train a binary classifier for predicate wear, say, close to 100 negative domain LTN constraints,
such as

Vxy wear(x,y) — —Laptop(x) Vxy wear(x,y) — —Sofa(x) Vxywear(x,y) = —Tree(x) ...,

would have been required to enumerate the objects that cannot be in the domain of predicate wear. Similarly, close
to 100 negative range LTN constraints, such as

Vxy wear(x,y) — —Table(y) Vxywear(x,y) — —Car(y) Vxywear(x,y) — —Oven(y) ...,

would have been required to enumerate what cannot be in the range.

OWL can express equivalent logical constraints, and can do so more concisely. The VRD-World ontology
can express the equivalent of the close to 100 negative domain constraints 1) by defining the (disjoint) classes
WearCapableThing and WearIncapableThing in its class hierarchy, and 2) by declaring that the domain
of object property wear is restricted to members of the class WearCapableThing, with the OWL axiom

vrd:wear rdfs:domain vrd:WearCapableThing

Similarly, the logical constraint equivalent of the close to 100 negative range LTN Real Logic axioms can be ex-
pressed 1) by defining the (disjoint) classes WearableThing and NonWearableThing in the class hierarchy
of VRD-World, and 2) by declaring that the range of object property wear is restricted to members of the class
WearableThing, with the OWL axiom

vrd:wear rdfs:range vrd:WearableThing

Figure 1 shows how an OWL-based KG with an appropriate ontology (such as VRD-World) can be used, in the
guise of a symbolic deduction engine, to leverage ontological rules as logical constraints to guide neural learning.
Suppose the Object Detection neural network predicts that x is a dog and vy is a surfboard. If the multi-class, multi-
label Predicate Prediction neural network shows a tendency to predict a visual relationship such as (dog, wear,
surfboard), the RDF triples representing this prediction

vrd:x rdf:type vrd:Dog
vrd:y rdf:type vrd:Surfboard
vrd:x vrd:wear vrd:y

can be inserted into the KG. OWL type inference will infer that x is a WearCapableThing (i.e., in VRD-World,
dogs can wear things), and that y (a surfboard) is a NonWearableThing. But the axiom expressing the range re-
striction on predicate wear will lead OWL to infer that y is aWearableThing. OWL’s logical consistency checks
will detect that individual y is a member of both WearableThing and NonWearableThing, two classes de-
clared to be disjoint which cannot share members. OWL reasoning will detect and report this logical inconsistency
(this constraint violation). This feedback can be used to penalise loss to help the Predicate Prediction NN learn to
avoid predicting visual relationships that are semantically invalid.

In addition to illustrating that OWL-based KGs can emulate the logical constraints approach to NeSy Al, this
example also illustrates an important advantage possessed by OWL-based KGs over other approaches to using
logical constraints. The research in [88] shows that the logical constraints approach to NeSy Al is exposed to the
risk of combinatorial explosion, where the number of constraints requiring expression grows too rapidly with the
number of classes in the dataset. Almost 200 LTN Real Logic axioms would have been needed in relation to just
one VRD predicate, wear. And about 30 of the 70 VRD predicates admit domain and/or range restrictions of some
kind. Indeed, [88] reports implementing a “tractable sample” only of the LTN Real Logic axioms implied by the
negative domain/range constraints training strategy selected for the experiments. In contrast, once an appropriate
class hierarchy is defined, expressing powerful domain and range restrictions in OWL is easy.



This comparative advantage possessed by OWL for expressing background knowledge (and logical constraints)
concisely is reinforced by considering a different example. The autonomous vehicle driving videos and annotated
bounding boxes of the ROAD-R dataset [86] are accompanied by 243 manually specified propositional logic con-
straints that define the permissible combinations of labels for 10 agent classes, 19 agent action classes, and 12 agent
location classes. Amongst the 243 logic constraints, 45 have a format such as —~Car VV =Bus (meaning “an agent can-
not be a car and a bus at the same time”’), or "RedTL V —=GreenTL (meaning “a traffic light cannot be red and green
at the same time”). Collectively, these 45 constraints express mutual exclusiveness between pairwise combinations
of the 10 agent classes. Precise counterparts of these 45 propositional constraints can be represented in OWL with
just two axioms, such as:

:DisjointAgents rdf:type owl:AllDisjointClasses
:DisjointAgents owl:members (:Car :Bus :Motorbike :Pedestrian ... )

Similarly, 66 of the ROAD-R propositional constraints express pairwise mutual exclusiveness amongst the 12 agent
location classes. Counterparts of these can be represented in OWL using just two more such axioms.

In fact, by making appropriate use of OWL’s constructs for declaring domain and range restrictions, disjoint
classes, disjoint properties, functional properties, and the like, it may well be possible to design an OWL ontology
that emulates all of the 243 propositional logic constraints specified for the ROAD-R dataset. Doing so would,
in theory, make it feasible to repeat the ROAD-R experiments in [86] using and OWL-based KG as a symbolic
deduction engine instead of using the original propositional constraints with a SAT solver as a reasoning engine.

Now we consider how OWL’s other category of logical inference—the one that infers new knowledge—can
be leveraged in the context of using logical constraints to guide neural learning. An alternate strategy for using
OWL to emulate the propositional logical constraints of the ROAD-R dataset is to employ the concept of integrity
constraints described in [89]. Rather than checking and enforcing ontology (KG) logical consistency, integrity
constraints employ Datalog rules that supplement an OWL ontology to represent logical constraints. Such constraint
rules, if satisfied, infer explicit new triples into the KG which can then be queried and interpreted as signals of
constraint violations. For example, the Datalog integrity constraint rule

Violation(X) :— Car(X), Bus (X)

declares that an agent cannot be both a car and a bus. Similarly, the hypothetical ontology would permit the creation
of rules like

Violation(X) :— TL(X), hasL(X, Y), hasL(X, Z), GreenL(Y), RedL(Z)

to establish that a traffic light (TL) cannot be red and green at the same time. Note that, unlike in the propositional
case, Datalog rules provide additional granularity for describing cases in which an image contains more than one
traffic light. This approach using integrity constraints could also be applied to the VRD case, with rules like

Violation(X) :— vrd:wear (X, Y), not vrd:WearCapableThing (X)
Violation(Y) :— vrd:wear (X, Y), not vrd:WearableThing (Y)

3.4. Integrating OWL-based KG reasoning with existing NeSy frameworks

OWL-based KG symbolic knowledge and deductive reasoning can be integrated with and leveraged by existing
logic-based NeSy frameworks such as LTN. LTN functions that encapsulate interactions with OWL-based KGs can,
in theory, participate in LTN Real Logic knowledge axioms used to train NNs. One precondition is that there is
sufficient contextual information contained in LTN tensors (or otherwise) to permit RDF triples to be constructed
and inserted into a KG to drive reasoning, and/or to enable KG queries to be formulated. The only other precondition
is that the results of KG interactions can be mapped to fuzzy truth values in [0, 1].

One application of this idea involves using OWL-based KG reasoning to manage the risk of combinatorial ex-
plosion (described in Section 3.3) to which the logical constraints approach to NeSy Al is exposed. A prime cause
of exposure to this risk derives from the fact that logical constraints (as used by LTN and the ROAD-R dataset, for
example) are restricted to being expressed in terms of the low-level, granular object classes present in data and their



annotations. The option to express constraints more concisely, in terms of higher-level, more general classes, is not
available. In contrast, OWL ontologies routinely possess rich class hierarchies that permit ontological rules to be
defined in terms of high-level, general classes, which affords simplicity and parsimony.

To illustrate, consider again the research undertaken in [88], where the use of negative domain and range con-
straints leads to the need for an intractable number of LTN Real Logic knowledge axioms to be crafted. This time,
however, suppose that we integrate interactions with an OWL-based KG (acting as a symbolic deduction engine)
into our LTN Real Logic knowledge axioms in order to map the granular classes present in the data to higher-level,
more general classes defined in the class hierarchy of the VRD-World ontology. Using this strategy, we can imagine
replacing the original (close to) 200 negative domain and range LTN constraints used to train a binary classifier for
VRD predicate wear with just two positive LTN Real Logic knowledge axiom constraints, such as:

Vxy wear(x,y) — WearCapableT hing(x) Vxy wear(x,y) — WearableThing(y)

For clarity, note that, unlike in OWL reasoning and Datalog rule reasoning where new knowledge is inferred, LTN
Real Logic knowledge axioms like these do not infer anything, despite the fact that they express logical implications.
Instead, the degree to which LTN Real Logic knowledge axioms are satisfied is measured, and the extent to which
they are not satisfied represents loss that drives neural learning.

A more compute-efficient implementation of the proposal just described is also feasible. In this setting, we only
wish to exploit the type inference (subsumption reasoning) capabilities of OWL reasoning. But, as we saw in Section
3.2, for a given OWL ontology, these capabilities can be fully encoded in the adjacency matrix of the transitive
closure of the ontology’s class hierarchy. So instead of interacting with an OWL-based KG to use OWL reasoning
to map granular classes to higher-level classes, we can instead use the adjacency matrix to do the mapping.

Integrating OWL-based KG reasoning with LTN in the manner just described is a specialised approach to blending
OWL (a Description Logic) with (fuzzy) first-order logic (FOL). Another approach to blending OWL with FOL is
to translate it into FOL. This leads to opportunities to extend OWL reasoning capabilities by augmenting OWL
ontologies with supplementary FOL axioms (or ontologies) that express things OWL cannot. Tools that support
this approach include Hets (The Heterogeneous Tool Set) [90] and Gavel-OWL [91]. The resulting integrated FOL
ontologies (OWL-to-FOL axioms, plus supplementary FOL axioms) that such tools produce are reasoned over using
established FOL Automated Theorem Provers (ATPs).

The ‘translate OWL to FOL’ strategy just described and the ‘translate OWL to Datalog’ strategy mentioned in
Section 2.4 are instances of the same pattern: (i) translate OWL into logic space X; (ii) optionally extend OWL
with supplementary knowledge expressible in logic space X; (iii) reason using the logical inference technology
established for logic space X. Such strategies widen the window of opportunity for leveraging the available OWL
resources in NeSy frameworks.

4. Enabling NeSy Research using OWL-based KGs with NeSy4dVRD

Sections 2 and 3 focus on inspiring more NeSy research using OWL-based KGs by highlighting their benefits,
capabilities, and applications, especially with respect to reasoning, and particularly in symbolic deduction engine
settings. But inspiration alone may not be enough. To undertake NeSy research with OWL-based KGs and reasoning
in a practical way, researchers need to also be enabled with appropriate dataset resources. Resources are needed that
combine data for neural learning with strongly-aligned, companion OWL ontologies describing the domains of
the data in order to support directly pertinent symbolic OWL reasoning. Such resources are scarce. We suspect
this scarcity represents a silent barrier that inhibits NeSy research using OWL-based KGs that might otherwise be
undertaken. As well as echoing our observations, [23] calls for a central repository for such specialised resources in
order to simplify their discovery. One resource of this kind (one which belongs in such a repository) is NeSy4VRD
(Neurosymbolic Al for Visual Relationship Detection). NeSy4VRD was co-developed and published by the authors
of this paper [38] to help address the scarcity issue.

NeSy4VRD consists of the following components and services:



1. the images of the original VRD dataset [39] (distributed with permission from one of the principals associated
with its creation) in order to make them publicly available once again;

2. quality-improved versions of the original VRD visual relationship annotations that have been comprehensively
customised and extended to enable the engineering of a robust ontology;

3. a strongly-aligned, custom-designed companion OWL ontology, called VRD-World, that precisely describes
the domain of the images and visual relationships;

4. sample Python code for loading the annotated visual relationships into a knowledge graph hosting the VRD-
World ontology, and for extracting them from a knowledge graph and restoring them to their native format;

5. support for extensibility of the annotations (and, thereby, the ontology) in the form of (a) comprehensive
Python code enabling deep but easy analysis of the images and their annotations, (b) a custom, text-based
protocol for specifying annotation customisation instructions declaratively, and (c) a configurable, managed
Python workflow for customising annotations in an automated, repeatable process;

6. comprehensive documentation describing (a) how to use the extensibility support infrastructure, () how to
share annotation/ontology extensibility projects undertaken by researchers in pursuit of their private research
interests, (¢) how to reuse shared extensibility projects and use the NeSy4VRD workflow to compose them
in novel combinations, and (d) how the ability to undertake, share, reuse and compose NeSy4VRD extensi-
bility projects represents a new model of collaborative data annotation that we call Distributed Annotation
Enhancement.

The NeSy4VRD dataset package (VRD images, quality-improved visual relationship annotations, and companion
VRD-World OWL ontology) is distributed on Zenodo'. The NeSy4VRD extensibility support infrastructure and
comprehensive documentation are available on GitHub?.

5. Conclusion

A central concern of NeSy Al research is to explore ways of combining neural learning with symbolic background
knowledge and reasoning. OWL-based KGs are exemplars of symbolic knowledge representation and reasoning
technology and machinery. They can do everything that general KGs can do in terms of representing symbolic
knowledge and generating embeddings, plus they can perform sound deductive reasoning to both infer new knowl-
edge and enforce logical consistency, and they can do so in the guise of symbolic deduction engines. Given these
attractive features, OWL-based KGs warrant more research attention from the NeSy community than they have re-
ceived. Their potential for contributing to NeSy Al is not being fully explored. By describing and illustrating their
benefits, capabilities, and flexible applications, we have endeavoured to inspire more such research. By having con-
tributed NeSy4VRD—a specialised and scarce dataset resource—to the NeSy community, we hope to have lowered
barriers to entry and thereby enabled more such research. A recent overview of NeSy systems [92] reports success
using an OWL-based KG to boost expert user satisfaction with large language model performance. Like us, the
authors strongly advocate the use of KGs (general and OWL-based) as symbolic components in NeSy systems.
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