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Abstract

There are many methods and systems to tackle the ontology alignment problem, yet a
major challenge persists in producing high-quality mappings among a set of input ontologies.
Adopting a human-in-the-loop approach during the alignment process has become essential
in applications requiring very accurate mappings. However, user involvement is expensive
when dealing with large ontologies. In this paper, we analyse the feasibility of using Large
Language Models (LLM) to aid the ontology alignment problem. LLMs are used only in
the validation of a subset of correspondences for which there is high uncertainty. We have
conducted an extensive analysis over several tasks of the Ontology Alignment Evaluation
Initiative (OAEI), reporting in this paper the performance of several state-of-the-art LLMs
using different prompt templates. Using LLMs as Oracles resulted in strong performance
in the OAEI 2025, achieving the top-2 overall rank in the bio-ml track.

Keywords: knowledge graph alignment, ontology matching, large language models.

Supplemental Material: Source code and relevant resources for the experiments con-
ducted in this paper are available in Zenodo: https://doi.org/10.5281/zenodo.15394653.
The source code for the experiments with different LLMs and prompts as diagnostic tools is
available at https://github.com/city-artificial-intelligence/rai-ukraine-kga-llm. The source
code for LogMapLLM’s integrated pipeline is available in this GitHub repository: https:
//github.com/city-artificial-intelligence/logmap-llm.

1 Introduction

Ontology alignment [11] plays a crucial role in integrating diverse data sources across domains.
While numerous ontology matching systems exist (e.g., [39]), systems capable of producing high-
quality correspondences among the input ontologies are still needed, especially in applications
where high confidence is paramount. One way to address this issue is through user interaction
to manually verify uncertain mappings; however, this approach is often time-consuming and
expensive. An alternative is to leverage Large Language Models (LLMs) as encoders of large
amounts of data. LLMs have shown potential to be useful within an ontology alignment pipeline
(e.g., [42]). Nevertheless, LLMs are computationally or financially costly, and an unlimited use
is not feasible.

In this paper, we have extended the state-of-the-art ontology matching system LogMap [24]
to perform calls to an LLM-based Oracle. The LLM-based Oracle is used to validate a subset of
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correspondences where LogMap is uncertain. Thus, the LLM is invoked only for complex cases
where traditional alignment techniques may be insufficient. The calls to the LLM-based oracle
are performed via ontology-driven prompts that exploit different levels of lexical and contextual
information about the entities in the mappings in question. We selected the GPT-4o Mini model
(OpenAI) and a range of Google Gemini Flash models for our experiments, due to their good
performance in recent LLM leaderboards.

To analyse the suitability of the LLM-based Oracles, we have conducted an extensive evalu-
ation with the anatomy [10], largebio [26], and bio-ml [21] datasets of the Ontology Alignment
Evaluation Initiative (OAEI) [40, 41], involving a total of nine matching tasks. These datasets
are complex and have become a reference in the research community. We have assessed the
diagnostic capabilities of thirty different LLM-prompt combinations based on the choice of five
LLM implementations and six prompt templates. We have also evaluated the contribution of
the LLM-based Oracles to the overall matching task by comparing the results with LogMap (au-
tomatic mode) and simulated Oracles with variable error rates [30]. We also report experiments
for the anatomy dataset with the open-weight models Mistral, Llama and Qwen.

In contrast with other state-of-the-art systems that rely heavily on LLMs, our approach is
designed to only use the LLM-based Oracle in very specific cases. Hence, the use of LLMs is more
accessible without the need for substantial computational infrastructure or financial resources.
The following points highlight the main contributions and novel aspects of this work. (i) We
investigate the effect of incorporating the ontology context of the entities into prompt design,
an aspect that has not been thoroughly examined in the ontology alignment literature. (ii)
To our knowledge, while LLMs are increasingly applied in ontology alignment pipelines, their
use as Oracles has been unexplored in the state-of-the-art. (iii) We provide a comprehensive
evaluation that offers novel insights into the use of LLMs as diagnostic engines for ontology
alignment, including a transparent and fine-grained analysis of the LLM contribution. (iv) The
combination of LogMap with an LLM-based Oracle achieved top-2 overall results in the OAEI
2025 bio-ml track.

The paper is organised as follows. Section 2 introduces the necessary background. The
relevant related work is provided in Section 3. Section 4 presents our method and system
pipeline. Evaluation results are analysed in Section 5. Conclusions, future work and limitations
are discussed in Section 6 and Section 7.

2 Preliminaries

An ontology alignment is the process of finding correspondences or a mapping M among the
entities (ontology classes, properties or instances) of two or more ontologies. Amapping involving
two entities is typically represented as a 4-tuple ⟨e1, e2, r, c⟩ where e1 and e2 are entities of the
ontologies O1 and O2, respectively, r is a semantic relation, typically one of {⊑,⊒,≡}, and c is
a confidence value (usually a number between 0 and 1). For simplicity, in this paper, we refer
to an equivalence mapping (≡) as a pair ⟨e1, e2⟩.

Alignment task. In the OAEI, an alignment or matching task is composed of a pair of
ontologies, O1 (source) and O2 (target), and an associated reference alignment MRA. An
MRA, although it may not be perfect, serves as a guide to evaluating and comparing alignment
systems.

Alignment system. An ontology alignment system is a program that, given as input an
alignment task, generates an ontology alignment MS . We have selected the state-of-the-art
alignment system LogMap [24] as the baseline for our experiments due to its flexibility to be
adapted to different evaluation scenarios. LogMap can operate in a fully automatic mode or
allow interaction with an Oracle [30]. During the mapping selection stage, LogMap identifies a
subset of mappings Mask for which it is uncertain and would prefer to leverage the expertise
of the Oracle. If the Oracle is not available, LogMap performs automatic decisions over Mask.
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Appendix A provides additional information about LogMap, including the workflow it follows
when allowing interaction.

Oracle. We define an Oracle as an external party that can assess the correctness of a given
mapping ⟨e1, e2⟩. An Oracle can be a domain expert or an automated engine that exploits
background knowledge. Additionally, the OAEI’s interactive matching task simulates domain
experts with different error rates via Oracles relying on the reference alignment of the alignment
task and randomly generating erroneous replies according to the selected error rate [30].

Evaluation metrics. We use the standard evaluation metrics Precision (Pr), Recall (Re), and
F-score (F) to evaluate an alignment MS computed by a system w.r.t. a reference alignment
MRA:

Pr =
|MS ∩MRA|

|MS |
, Re =

|MS ∩MRA|
|MRA|

, F = 2 · Pr ·Re

Pr +Re

We use Sensitivity (Se), Specificity (Sp), and Youden’s index (YI) [47], as follows, to evaluate
the effectiveness of an Oracle at diagnosing mappings in Mask, where TP, FN, TN, and FP stand
for the usual true positive, false negative, true negative, and false positive counts, respectively,
such that:

Se =
TP

TP + FN
, Sp =

TN

FP + TN
, Y I = Se+ Sp− 1

LLM prompting. LLMs like GPT-4 are pretrained on vast text corpora. They are commonly
used in a few-shot or zero-shot setting via prompts. Prompts can exploit the generative capa-
bilities of the LLM or ask for specific yes/no or True/False decisions. In the ontology alignment
setting, a mapping ⟨e1, e2⟩ can be transformed into a binary question to the LLM – “Does e1
represent the same entity as e2? (True/False)” – possibly enriched with ontology context (e.g.,
parent classes or synonyms). This approach allows the LLM to be used as a lightweight semantic
Oracle.

3 Related Work

The Ontology Alignment Evaluation Initiative (OAEI) has driven progress since 2004 by provid-
ing standardised benchmarks and evaluation protocols for matching systems [39]. Widely-used
traditional matchers include LogMap [24] and AgreementMakerLight (AML) [12], each leverag-
ing different combinations of lexical, structural, and background-knowledge techniques. Human
validation has long been recognised as critical for high-precision mappings. Early frameworks
combined automated matching with domain expert feedback to resolve low-confidence corre-
spondences, but at the cost of extensive user effort and time [30].

In recent years, a new generation of systems leveraging Machine Learning (ML) and (large)
language models has emerged. The OAEI Bio-ML track [21] was established to foster partic-
ipation in the OAEI and to facilitate the systematic evaluation of these systems. Early ap-
proaches showed promising results applying word embeddings to the ontology alignment task
(e.g., [29, 33, 23]). Knowledge graph embedding systems like OWL2Vec* [6] were also deployed
in combination with ML to learn and validate ontology alignment (e.g., [7, 18]). Systems relying
on BERT-based models have become popular, given their flexibility to fine-tuning for specific
tasks like ontology alignment. Prominent examples include BERTMap [19], BioGITOM [38], and
the Matcha family [13]. Recent developments in the field are increasingly driven by approaches
based on LLMs. Saki Norouzi et al. [34] and He et al. [20] performed exploratory studies
about the potential of LLMs at ontology alignment. Amini et al. [2] extended the exploration
to discover complex alignments beyond equivalence or subsumption. Systems like OLaLa [22],
LLMs4OM [17], MILA [44], Agent-OM [42], KROMA [32] and HybridOM [45] have integrated
LLMs in their architectures. A common technique has been to use retrieval methods to select
top-k candidates for each entity, then asking the LLM to select the best among these candidates
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Figure 1: LLM-in-the-loop as an Oracle to diagnose challenging matches in ontology alignment.

(e.g., [22, 17, 44]). By contrast, HybridOM uses an LLM to generate additional lexical descrip-
tions of the entities involved in candidate correspondences. Recent approaches have explored the
use of LLMs to focus on the alignment of instance data within knowledge graphs (e.g., [48, 9]).
Agent-OM proposed the use of autonomous LLMs to orchestrate multiple matching subtasks,
indicating potential for agentic AI workflows to be adopted for ontology matching [42].

Our approach builds upon LogMap [24] and employs the LLM as an Oracle to assess a
targeted subset of mappings. Rather than attempting to evaluate a large set of candidate
correspondences, we focus on the validation of mappings where LogMap is uncertain. Systems
like MILA [44] and KROMA [32] have also focused on the limitation of the number of queries,
leading to a reduction in the required computation times.

4 Methods: LLMs as Oracle

As introduced in Section 2, we build upon the system LogMap. In addition to predicting a set
of output mappings, LogMap also identifies a subset of uncertain mappings (Mask), which can
optionally be given to an Oracle. In this paper, we have extended the architecture of LogMap to
use a state-of-the-art LLM as an Oracle as depicted in Figure 1. We restrict the use of the LLM
to the mappings in Mask. These mappings are not trivial as they typically involve entities with
different labels and/or contexts, and they are better suited as a challenge to the performance of
LLMs. LogMap interacts with the Oracle on-demand for each mapping ⟨e1, e2⟩ ∈ Mask. The
following subsections detail the internal steps involved in the interaction with the LLM-based
Oracle.

4.1 Ontology-driven prompt builder

The first step in the interaction with the LLM-based Oracle is the creation of an ontology-driven
prompt to ask about the correctness of a given candidate mapping ⟨e1, e2⟩. The ontologies
provide lexical representations (e.g., labels and synonyms), as well as context (e.g., parent classes)
for e1 and e2. According to the locality principle [27], mappings should link entities that have
similar contexts. Hence, a basic prompt should include at least the lexical representation of
entities e1 and e2, and that of one of their directly connected entities.

We have designed six different prompt templates combining three characteristics: (i) using
similar sentences to how humans write (natural language-friendly, NLF), (ii) inclusion of ex-
tended context (EC), and (iii) inclusion of synonyms (S). Prompts without an extended context
only include one of the direct parents for classes and properties, and one of the direct types for
individuals. While the prompts with an extended context include two levels of parent classes.
We also evaluate combinations of the above characteristics. We refer to as PNLF

EC+S the prompt
using all NLF, EC and S characteristics.
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For each mapping ⟨e1, e2⟩ to be assessed, we dynamically populate each of the prompt tem-
plates according to the entities in the mapping and their associated ontology information. Below,
we show the populated prompts for the mapping ⟨mouse:MA 0001771 (alveolus epithelium),
human:NCI C12867 (Alveolar Epithelium) ⟩.

Structured prompts. This type of prompt uses structured information with uncommon nat-
ural language expressions. Listing 1 shows the P prompt, where the entities and their context
are listed. Listing 4 in Appendix B shows the structured prompt with extended context PEC.

Analyze the following entities, each originating from a distinct ontology. Your task is to assess
whether they represent the **same ontological concept**, considering both their semantic meaning
and hierarchical position.

1. Source entity: "alveolus epithelium"
- Direct ontological parent: lung epithelium

2. Target entity: "Alveolar_Epithelium"
- Direct ontological parent: Epithelium

Are these entities **ontologically equivalent** within their respective ontologies? Respond with
"True" or "False".

Listing 1: Basic prompt without any of the characteristics enabled (P)

Natural-language friendly prompts. These prompts are based on the assumption that,
given that LLMs are trained on large corpora of human-generated text, formulating questions
in a more human-like way is expected to yield more accurate results. Listing 2 shows this type
of prompt (PNLF), while Listing 5 in Appendix B includes the version with extended context
PNLF

EC .

We have two entities from different ontologies.

The first one is "alveolus epithelium", which belongs to the broader category "lung epithelium"

The second one is "Alveolar_Epithelium", which belongs to the broader category "Epithelium"

Do they mean the same thing? Respond with "True" or "False".

Listing 2: PNLF Prompt (natural-language friendly).

Prompts with synonyms. Although LLMs may inherently encode synonyms and lexical
variations related to the ontology entities, the PNLF

S and PNLF
EC+S prompts are designed to analyse

the impact of explicitly including synonyms for both the entities in a given correspondence and
their associated context. A PNLF

S prompt is shown in Listing 3, while Listing 6 in Appendix B
provides its variant with extended context (PNLF

EC+S).

We have two entities from different ontologies.

The first one is "alveolus epithelium", which falls under the category "lung epithelium".

The second one is "Alveolar_Epithelium", also known as "Lung Alveolar Epithelia", "Alveolar
Epithelium", "Epithelia of lung alveoli", which falls under the category "Epithelium".

Do they mean the same thing? Respond with "True" or "False".

Listing 3: PNLF
S Prompt (natural-language friendly with synonyms).

System prompts. In addition to the above mapping templates, it is possible to add, for each
LLM session, a short message that frames the model’s overall role and answering style before it
sees any individual mapping question. We experimented with sessions using no system prompt
as well as various system prompt variants, positioning the LLM as follows: (i) as an ontology
matching expert to ensure precision (base); (ii) to explain its decision in a natural-language
friendly manner (explainable); (iii) emphasizing the use of hierarchical and semantic context
(hierarchical); and (iv) to leverage explicitly provided synonyms and parent-class semantics
(lexical). Listing 7 in Appendix B includes the specific system prompts.
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Model
Cost / 1M Tokens Request Limits Cost

Latency (s)
Input Output Minute Day 1k requests

Qwen3-8b (local) - - 0.5 <1,000 - >125
Mistral Small-2402 $1.00 $3.00 400 576,000 $0.15–$0.23 6–10
Llama 3-70b $2.65 $3.50 800 1,152,000 $0.35–$0.62 7–20

Gemini 1.5 Flash $0.08 $0.30 2,000 2,880,000 $0.010–$0.018 6–10
Gemini 2.0 Flash $0.10 $0.40 2,000 2,880,000 $0.014–$0.024 4–7
Gemini 2.0 Flash-Lite $0.08 $0.30 4,000 5,760,000 $0.010–$0.018 5.5–7.5
Gemini 2.5 Flash $0.15 $0.60 1,000 10,000 $0.018–$0.033 6.5–8
GPT-4o Mini $0.15 $0.60 500 10,000 $0.025–$0.04 4–14

Table 1: Latency and cost of evaluated LLMs. Each request typically consumed between 100
and 250 input tokens and 5 to 10 output tokens.

4.2 LLM-based diagnosis

Our selected LLMs include GPT-4o Mini (OpenAI) and a range of Google Gemini Flash models
(v1.5, 2.0, 2.0 Lite, and 2.5 Preview). These models were chosen based on their balance of cost-
effectiveness, response latency, scalability, reliability, and output quality, as compared to other
commercial APIs and open-weight alternatives. Furthermore, these LLMs expose a consistent
client interface, enabling straightforward integration into our system. Support for lightweight
models such as GPT-4o Mini and Gemini 2.0 Flash-Lite ensures accessibility for researchers
operating under constrained budgets. At the same time, including a progression of Gemini
Flash versions (from v1.5 to v2.5) allows us to observe how model improvements over time
impact diagnostic performance in the ontology alignment task.

In order to achieve binary (True/False) diagnostic classification, we used a structured output
feature. We define a Boolean answer that will be a decider of the zero-shot question that we ask
the LLM. To enhance robustness, we incorporated a validation and retry mechanism, that is, if
the output is not parsed correctly (e.g., neither True nor False), we resend the same request.

We used the Chat Completions API [36] for GPT-4o Mini, and the OpenAI’s SDK endpoint
for the Gemini Models [16]. Response latency typically remains within a few seconds, depend-
ing on prompt complexity and model characteristics. This enabled high-throughput querying,
especially when requests were executed in parallel. However, API rate limits imposed practi-
cal constraints on experimentation. The Gemini API permits up to 2,000 requests per minute
(RPM) by default [14], whereas OpenAI’s API begins with a limit of 500 RPM and a daily quota
of 10,000 requests [37], thereby restricting the overall throughput of our experiments. Regarding
the cost of experiments, token usage is a key factor. Each request typically consumes between
100 and 250 input tokens, depending on the complexity and detail of the prompt. Pricing per
million input tokens varied per model [37, 15]. The average cost per 1,000 requests ranged from
approximately $0.01 to $0.04. Table 1 summarises the cost and latency of the evaluated LLM
models.

Open-weight models. Our end-to-end evaluation focuses on commercial LLMs due to their
ease of integration via their APIs and cost-effective performance. This choice, however, may
limit reproducibility and accessibility for users or institutions that prefer or require open-weight
alternatives. Hence, we also performed a preliminary evaluation with the open-weight models
Mistral, Llama (Meta), and Qwen (Alibaba Cloud). Mistral Small (2402, approx. 24b) and
Llama 3-70b Instruct were accessed via the Amazon Bedrock API [4, 3]. Mistral Small typically
responded to mapping requests in less than 10 seconds, while Llama 3-70b took between 7 and
20 seconds. The cost per 1,000 requests was under $0.23 for Mistral Small-2402 and $0.62 for
Llama3-70b. Qwen3 models (1.7b and 8b) [46] were run locally on a standard laptop equipped
with an integrated M2 GPU. Due to the limitations of the local setup, the average latency per
request exceeded 125 seconds. Table 1 also summarises the cost and latencies for the evaluated
open-weight models.
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OAEI track Matching task |O1| |O2| |MRA|
Anatomy Mouse-Human 2,755 3,313 1,516

Bio-ML

NCIT-DOID 15,991 8,516 4,686
OMIM-ORDO 9,662 9,320 3,721
SNOMED-FMA.body 34,562 89,180 7,256
SNOMED-NCIT.neoplas 23,116 20,497 3,804
SNOMED-NCIT.pharm 29,646 22,387 5,803

Largebio
FMA-NCI 79,049 66,919 3,024
FMA-SNOMED 79,049 122,521 9,008
SNOMED-NCI 122,521 66,919 18,844

Table 2: Statistics of the used OAEI datasets. Ontology size is given in terms of the number of
entities. MRA is the reference alignment of the matching task.

4.3 Impact of the Oracle

The diagnosis performed by the Oracle over the mapping set Mask may have an impact on the
overall LogMap performance as it may lead to the acceptance or rejection of additional mappings.
The authors in [30] simulated Oracles with different error rates and performed an extensive
analysis of the impact and error propagation of the Oracle decisions. In this work, we have
followed a similar approach to evaluate the LLM-based Oracle (OrLLM ) against Oracles with
error rates ranging from 0% (i.e., perfect Oracle, Or0) to 30% (i.e., Or30). The simulated Oracles
rely on the reference alignment of the relevant matching task and generate erroneous replies with
the probability of their associated error rate. These Oracles with uniformly distributed errors
do not realistically represent how a domain expert would behave, but they serve our purpose to
assess the performance of the LLM-based Oracle in comparison with potential domain experts
that are likely to make mistakes [30].

5 Experimental evaluation

Our experiments were conducted on a standard laptop with the selected LLM models as detailed
in Section 4.2. All the experiments reported here were obtained with a budget of less than
$50. We used the anatomy [10], largebio [26], and bio-ml [21] datasets provided by the OAEI
evaluation initiative [40, 39]. As shown in Table 2, we covered a total of nine ontology matching
tasks, involving ontologies of diverse sizes containing mostly concepts. The reference alignments
(MRA) of these matching tasks have different sources. In anatomy, the reference alignment has
been manually curated, while in bio-ml and largebio the reference alignment relies on public
resources like MONDO [43] and UMLS [5].

Diagnostic capability. We tested over the 9 matching tasks a total of 30 LLM-based Oracles
(OrLLM ), combining the six prompt templates introduced in Section 4.1 with the LLM models
referred to in Section 4.2. Figure 2 shows the Youden’s index (YI) as a measure of the correctness
of the LLM-based Oracles for each LLM and prompt template combination. Detailed results per
matching task are provided in Appendix C.

Oracles relying on the Gemini 2.5 Flash model led to the best results on average, as sum-
marised in Figure 2. The best results were achieved by the combination of Gemini 2.5 Flash and
PNLF

S prompts, which we refer to as OrLLM
GF2.5. Table 3 compares the performance of LogMap

(automatic mode) and the best model combination OrLLM
GF2.5 in diagnosing the mappings inMask.

As anticipated, LogMap performs poorly as a diagnostic engine for the mappings in Mask, yield-
ing YI values close to 0 (i.e., no discriminative power), whereas OrLLM

GF2.5 achieves significantly
better results, with an average YI value exceeding 0.5.

The YI index captures the effectiveness of an Oracle at identifying positive (sensitivity) and
negative (specificity) mappings. A YI value of 1.0 indicates optimal performance. While no
standard cut-off values exist for YI, some papers use 0.3, 0.5 and 0.7 as representative values
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Figure 2: Summary of the diagnostic results (Youden’s index) for the LLM-based Oracles.

Matching task
|Mask| LogMap on Mask OrLLM

GF2.5 on Mask

P N Se Sp YI Se Sp YI

Mouse-Human 165 94 1.000 0.000 0.000 0.951 0.744 0.695

NCIT-DOID 364 492 1.000 0.000 0.000 0.849 0.697 0.546
OMIM-ORDO 172 227 0.343 0.551 -0.106 0.942 0.876 0.818
SNOMED-FMA.body 369 619 0.881 0.149 0.029 0.884 0.669 0.553
SNOMED-NCIT.neoplas 704 601 0.984 0.067 0.051 0.840 0.593 0.433
SNOMED-NCIT.pharm 297 260 0.929 0.065 -0.005 0.848 0.669 0.517

FMA-NCI 410 475 0.705 0.726 0.431 0.761 0.684 0.445
FMA-SNOMED 831 621 0.941 0.225 0.166 0.480 0.853 0.333
SNOMED-NCI 1450 1128 0.887 0.395 0.281 0.846 0.763 0.609

Average 529 502 0.852 0.242 0.094 0.822 0.728 0.550

Table 3: Comparison of LogMap (automatic mode) against the best LLM-based Oracle (OrLLM
GF2.5,

using Gemini 2.5 Flash and PNLF
S prompts) to diagnose the correctness ofMask. P is the number

of real positives in Mask, N the number of real negatives, Se denotes Sensitivity, Sp Specificity
and YI the Youden’s index.

for low, moderate and high effectiveness, respectively (e.g., [31]). Due to the complexity of the
mappings in Mask, moderate YI values can be expected of an Oracle.

Impact of the prompt template. Figure 2 also illustrates the impact of using different
prompt templates. Results vary across LLM models. Natural-language friendly prompts produce
more consistent behaviour, while incorporating extended context and synonyms has a positive
impact. Overall, for the Gemini 2.0 Flash and 2.5 Flash models, the most effective prompts were
PNLF

S (natural-language friendly with synonyms). We emphasise that different ontologies and
matching tasks pose varying challenges due to lexical and structural differences (see Appendix
C for an overview of the results per matching task). Our tested prompts aim to capture this
by leveraging both structural and lexical information in the input ontologies. There is also a
dependency on the selected Mask mappings by LogMap, which may also be more complex in
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Matching task
LogMap LogMap - OrLLM

GF2.0 LogMap - OrLLM
GF2.5

Pr Re F Pr Re F Pr Re F

Mouse-Human 0.915 0.848 0.880 0.945 0.844 0.892 0.963 0.842 0.898

NCIT-DOID 0.845 0.895 0.869 0.875 0.890 0.882 0.907 0.883 0.895
OMIM-ORDO 0.874 0.448 0.592 0.882 0.478 0.620 0.914 0.476 0.626
SNOMED-FMA.body 0.695 0.538 0.607 0.727 0.543 0.622 0.751 0.545 0.632
SNOMED-NCIT.neoplas 0.624 0.774 0.691 0.636 0.763 0.694 0.661 0.747 0.701
SNOMED-NCIT.pharm 0.825 0.625 0.711 0.847 0.625 0.719 0.855 0.621 0.719

FMA-NCI 0.860 0.800 0.829 0.901 0.796 0.845 0.853 0.804 0.828
FMA-SNOMED 0.796 0.641 0.710 0.814 0.644 0.719 0.854 0.585 0.694
SNOMED-NCI 0.868 0.650 0.743 0.866 0.656 0.747 0.897 0.646 0.751

Average 0.811 0.691 0.737 0.833 0.693 0.749 0.851 0.683 0.749

Table 4: Comparison of LogMap (automatic mode) with LogMap with the best LLM-based
Oracles (OrLLM

GF2.0 and OrLLM
GF2.5) on all matching tasks. Pr denotes Precision, Re Recall and F is

the F-score.

Figure 3: Comparison of LogMap, LogMap with OrLLM
GF2.5, and LogMap in combination with

Oracles with different error rates (Or0, Or20, and Or30).

some tasks than others (e.g., mappings involving isolated entities and/or with scarce synonyms).
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Matching task
LogMap LogMapLLM

Pr Re F Rank Pr Re F Rank

NCIT-DOID 0.843 0.893 0.867 #4 0.932 0.883 0.907 #2
OMIM-ORDO 0.834 0.456 0.589 #7 0.916 0.476 0.626 #4
SNOMED-FMA.body 0.760 0.569 0.651 #6 0.869 0.561 0.682 #4
SNOMED-NCIT.neoplas 0.763 0.772 0.736 #4 0.821 0.747 0.782 #1
SNOMED-NCIT.pharm 0.932 0.620 0.745 #4 0.979 0.621 0.760 #1

OVERALL 0.826 0.662 0.718 #5 0.903 0.658 0.751 #2

Table 5: LogMap and LogMapLLM in the OAEI 2025 bio-ml track. Pr=Precision, Re=Recall,
F=F-score. Rank represents the position out of 10 participants.

Overall matching task. Table 4 shows the results obtained using LogMap (automatic mode)
compared to LogMap integrated with an LLM-based Oracle (as depicted in Figure 1). We
selected the top-performing LLM-based Oracles using PNLF

S prompts: OrLLM
GF2.0 (based on Gemini

2.0 Flash) and OrLLM
GF2.5 (based on Gemini 2.5 Flash). As anticipated, the integration with the

LLM-based Oracle yields improved F-scores across all tasks. LogMap+OrLLM
GF2.5 dominates the

anatomy and bio-ml tasks, while LogMap+OrLLM
GF2.0 achieves the best results on largebio. To

better contextualise the effectiveness of the LLM-based Oracle, we compared performance also
with simulated Oracles with various error rates, following the approach in [30] as detailed in
Section 4.3. Figure 3 compares performance across all nine ontology matching tasks for: LogMap,
LogMap+OrLLM

GF2.5, and LogMap with the simulated Oracles Or0, Or20, and Or30 (corresponding
to error rates of 0%, 20%, and 30%, respectively). We can observe that OrLLM

GF2.5 performs
similarly to Or20, except in the FMA-SNOMED task (lower F-score) and OMIM-ORDO task
(higher F-score). In line with previous studies [24, 30], LogMap+Or30 still outperforms LogMap
(without Oracle). The statistical analysis in Appendix E supports these observations.

Comparison with OAEI systems. The results of LogMap+OrLLM
GF2.5 are highly competitive

when compared with the state-of-the-art systems participating in the OAEI campaign (see re-
sults in the OAEI 2021 [40] for largebio, and in the OAEI 2024 [39], and OAEI 2025 [41] for
anatomy and bio-ml). For example, LogMap+OrLLM

GF2.5 would have ranked top-3 in the 2024
anatomy track, top-2 in the 2021 largebio track, achieving performance comparable to leading
systems such as BertMap [19], Matcha [13], and LogMap-Bio [8] in the 2024 bio-ml track. In
the OAEI 2025, LogMap+OrLLM

GF2.5 participated under the name LogMapLLM, achieving top-4
results in the anatomy track and top-2 results in the bio-ml track [41, 28]. Table 5 reports
the official OAEI results and ranks achieved by LogMap and LogMapLLM in the bio-ml track.1

LogMap-Bio2 was, on average, the top performer in the bio-ml track with an (average) F-score
of 0.762, closely followed by LogMapLLM with an (average) F-score of 0.751.

Determinism of the LLM-based Oracles. The reliability of systems built on LLMs is
a critical concern. Thus, we assessed the variability in the performance of the LLM-based
Oracle across multiple independent runs, as well as the influence of the system prompt/message
(detailed in Section 4.1). In this experiment, we used the Gemini 2.0 Flash and Flash-Lite
models, applying all six prompt templates across three matching tasks. Performance variation
over four separate runs was negligible (i.e., the observed standard deviation for YI ranged from
0.001 to 0.005, see Appendix D for details). While system prompts did not lead to significant
changes, they had a modest impact on performance, suggesting that framing the LLM context
is important (see Appendix D).

1Note that the F-scores in Table 4 differ from the official OAEI bio-ml results, as this track does not consider
the complete ground truth for (global matching) evaluation. Further details are available at https://liseda-lab.
github.io/OAEI-Bio-ML/2025/index.html.

2LogMap-Bio [8] uses BioPortal as a source of mediating (biomedical) ontologies.
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LLM Model Sensitivity Specificity Youden’s Index

Mistral Small-2402 0.945 0.547 0.492
Llama 3-70b 0.989 0.359 0.348
Qwen3-1.7b 0.811 0.411 0.222
Qwen3-8b 0.764 0.825 0.590

Gemini 1.5 Flash 0.994 0.322 0.316
Gemini 2.0 Flash 0.994 0.411 0.405
Gemini 2.0 Flash-Lite 0.976 0.389 0.364
Gemini 2.5 Flash 0.951 0.744 0.695
GPT-4o Mini 0.908 0.511 0.419

Table 6: Diagnostic capabilities of open-weight models over Mask in the anatomy task (top).
We also show the performance of commercial models (bottom). All models were evaluated with
PNLF

S prompts.

Opportunities with Open-weight models. We tested the diagnostic capabilities of Mistral
Small-2402, Llama 3-70b, Qwen3-1.7b, and Qwen3-8b. Table 6 shows the results for the anatomy
matching task using the PNLF

S prompts. Qwen3-1.7b, the smallest model evaluated, performed
as expected with limited success in diagnosing mappings within Mask. In contrast, Qwen3-
8b delivered highly competitive results, surpassing several larger commercial and open-weight
models in terms of YI index. Appendix F includes results for Qwen3 models for all prompt
templates. Mistral Small-2402 also performed strongly, matching the level of Gemini 2.0 Flash
and GPT-4o Mini. Despite its size, Llama 3-70b underperformed expectations. These findings
highlight the potential of open-weight models—whether accessed via APIs like Amazon Bedrock
or deployed on local infrastructure—to serve effectively as Oracles in ontology alignment tasks.
Nonetheless, the choice of model involves balancing trade-offs among performance, latency, cost,
and access to infrastructure. Running open-weight models via Amazon Bedrock was generally
more costly than commercial APIs, while local deployment significantly increased latency due
to the limited resources.

Experiments on data leakage. Data leakage is a well-known challenge in the AI community,
in general, and in the ontology matching community, in particular, when evaluating LLM-based
systems on tasks with publicly available ground truths. We conducted an experiment using the
OAEI NCIT–DOID dataset to assess the presence of potential critical data leakage. In the OAEI,
ground truths are provided as sets of (correct) URI pairs (e.g., equivalence relations between enti-
ties identified by their URIs, i.e., their ontology ids). If the evaluated LLMs had been pretrained
on these ground truths, a simple prompt such as “Is URI1 equivalent to URI2?”—without any
additional contextual information—would be expected to yield performance comparable to, or
better than, the results reported in this study. However, this experiment resulted in a Youden’s
Index of approximately 0.01, indicating very limited evidence of leakage of the OAEI bio-ml
ground truths.

6 Conclusions and future work

The integration and understanding of the power of state-of-the-art LLMs within ontology align-
ment tasks is still at an early stage. Although the literature has shown promising results, there
are still open challenges concerning performance, costs, and the sustainable use of LLMs. In this
paper, we have explored the feasibility of integrating an LLM-based Oracle with the state-of-the-
art system LogMap, such that the Oracle is only called for a very specific subset of mappings for
which LogMap is uncertain. To the best of our knowledge, although LLMs are increasingly being
used within ontology alignment pipelines, the use of LLMs as Oracles has not been explored in
the literature. We have provided an extensive evaluation of LLM-based Oracles as a diagnostic
engine, as well as in combination with LogMap on an end-to-end ontology matching task. The
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obtained results are encouraging, improving the performance of LogMap and achieving the top-2
results in the OAEI bio-ml track. However, we have also shown that the results are far from a
perfect Oracle.

We foresee several promising directions for future work. One key avenue is to extend the
contextual information of the prompts, leveraging additional ontological relationships. Exploring
a broader range of prompt formulations and LLM models could also provide deeper insights
into the opportunities of using LLMs as Oracles. Given the observed variation in performance
across different prompts and models, combining multiple LLM-based Oracles through ensemble
methods could result in more reliable outcomes and enhanced performance. Automatic prompt
tuning and selection tailored to the matching task represents a promising direction for future
work. We also plan to investigate few-shot prompts, particularly for tracks such as bio-ml, where
a subset of mappings can be leveraged for training. Retrieval-augmented generation (RAG) may
also enable systems to dynamically access relevant background knowledge, such as BioPortal
[35], leading to more informed and accurate diagnostic capabilities.

7 Limitations

While our approach demonstrates strong results, several limitations merit discussion.

Missing human evaluation. A user study may also provide interesting insights in comparison
with the LLM-based Oracles. However, to make the exercise meaningful, we should involve
domain experts in the process. In this paper, we have performed a comparison with simulated
Oracles with different error rates, simulating a potential behaviour of a (non-perfect) domain
expert.

Potential training data leakage. Although our experiments on data leakage found no strong
evidence of leakage of the OAEI ground truths, we cannot guarantee that the evaluated LLMs
have not been exposed to existing OAEI benchmarks during pre-training, which could artificially
boost their reported accuracy. To support a fair and unbiased evaluation of the new generation of
ontology alignment systems relying on LLMs, the ontology matching community should prioritise
the creation of new tasks with truly hidden (blind) reference alignments as discussed during
the ISWC 2024 special session on Harmonising Generative AI and Semantic Web Technologies:
Opportunities, challenges, and benchmarks [1]. Nevertheless, the conducted experiments are still
valid, even under the potential assumption of data leakage, as we are comparing the diagnostic
capabilities of state-of-the-art models under the same conditions.

Resource constraints. Although our selected LLMs strike a balance between cost and quality,
financial and infrastructure constraints still pose challenges for widespread adoption of LLM-
based Oracles, especially in large-scale or time-sensitive applications. Additionally, commercial
model usage often involves rate limits and API changes, which could affect system stability.

Evaluation scope. Our experiments focused on OAEI datasets within three tracks. While
these cover a diverse set of biomedical domains and alignment challenges, additional evaluation
on other OAEI datasets would be necessary to fully understand the robustness and limitations of
our LLM-based Oracle approach—especially OAEI datasets in different domains and involving
the matching of properties and instances.

Focus on equivalence mappings. LogMap can output both equivalence and subsumption
mappings; indeed, it internally represents equivalence mapping as two subsumption mappings.
Nevertheless, in this paper, we focus on the most common type of mapping: equivalence. In the
future, LLMs can be leveraged to also discover and validate subsumption mappings and complex
alignments (i.e., arbitrary ontology axioms mentioning entities of two or more ontologies).
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Evaluation with additional LLMs. Our evaluation relies on a subset of available LLM
models selected according to limited financial and computational resources. We plan, however,
to extend the evaluation with additional models that meet our resource limitations. We also
intend to extend the evaluation to test open-weight models on the end-to-end alignment task.

8 Ethical consideration

AI tools were used only for grammar and minor language edits. No content creation, idea
development, or substantive rewriting was performed by AI. All research design, experiments,
analysis, and writing were carried out by the authors.

Contributions. EJR and AG defined the research objectives. SL, DS, SS, and EJR jointly
designed the methodology and experiments. SL and SS implemented the system infrastructure,
including API integrations and formal evaluation procedures. SL led the ontology data acqui-
sition, system optimization, and visualization components. DS designed and implemented the
prompt-engineering framework and developed the infrastructure for integrating local language
models. EJR and AG contributed to the analysis of the experimental results. All authors
contributed to drafting and revising the manuscript and approved the final version.

Acknowledgement. This research was supported by the RAI for Ukraine program of the NYU
Center for Responsible AI, and by Turing Innovations Limited and The Alan Turing Institute’s
Defence and Security Programme via the project GUARD. We would also like to acknowledge
the support of Dr Dave Herron in the creation of an integrated pipeline for LogMapLLM, which
enhances the reproducibility of the results. Finally, we thank the anonymous reviewers for their
valuable feedback during the ARR process.

References

[1] Alharbi, R., de Berardinis, J., Groth, P., Meroño-Peñuela, A., Simperl, E., Tamma, V.:
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[25] Jiménez-Ruiz, E., Grau, B.C.: Logmap: Logic-based and scalable ontology match-
ing. In: 10th Int’l Semantic Web Conference (ISWC). LNCS, vol. 7031, pp.
273–288 (2011). https://doi.org/10.1007/978-3-642-25073-6 18, https://doi.org/10.1007/
978-3-642-25073-6 18
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A LogMap ontology alignment system

LogMap is an ontology alignment system that combines lexical, structural, and semantic tech-
niques with logical reasoning to efficiently match large ontologies while preserving consistency
[25, 24].3 It supports interactive alignment and has consistently performed well in the Ontology
Alignment Evaluation Initiative (OAEI).

LogMap defines some heuristics based on lexical and structural similarity to decide about the
validity of a candidate mapping. However, some mappings are not clear-cut cases, and those are
the mappings LogMap selects to ask an Oracle (Mask). Figure 4 shows the workflow followed
by LogMap when allowing interaction. If an Oracle is not available, LogMap can also operate
in an automatic (non-interactive) mode.

Figure 4: Workflow of the ontology alignment system LogMap with calls to an Oracle.

B Ontology-driven and system prompts

Listings 4-6 show the ontology-driven prompts with extended context. While Listing 7 shows
the tested system prompts.

Analyze the following entities, each originating from a distinct ontology. Each is represented by
its **ontological lineage**, capturing its hierarchical placement from the most general to the
most specific level.

1. Source entity ontological lineage:
Level 0: alveolus epithelium
Level 1: lung epithelium
Level 2: respiratory system epithelium

2. Target entity ontological lineage:
Level 0: Alveolar_Epithelium
Level 1: Epithelium
Level 2: Epithelial_Tissue, Normal_Tissue

Based on their **ontological positioning, hierarchical relationships, and semantic alignment**, do
these entities represent the **same ontological concept**? Respond with "True" or "False".

Listing 4: PEC prompt (non natural language-friendly with extended context).

We have two entities from different ontologies.

The first one is "alveolus epithelium", which belongs to the broader category "lung epithelium",
under the even broader category "respiratory system epithelium"

The second one is "Alveolar_Epithelium", which belongs to the broader category "Epithelium", under
the even broader category "Epithelial_Tissue, Normal_Tissue"

Do they mean the same thing? Respond with "True" or "False".

Listing 5: PNLF
EC Prompt (natural-language friendly with extended context).

3https://github.com/ernestojimenezruiz/logmap-matcher
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We have two entities from different ontologies.

The first one is "alveolus epithelium", belongs to broader category "lung epithelium", under the
even broader category "respiratory system epithelium" (also known as "respiratory system mucosa").

The second one is "Alveolar_Epithelium", also known as "Alveolar Epithelium", "Lung Alveolar
Epithelia", "Epithelia of lung alveoli", belongs to broader category "Epithelium" (also known as
"Epithelium", "epithelium"), under the even broader category "Epithelial_Tissue, Normal_Tissue".

Do they mean the same thing? Respond with "True" or "False".

Listing 6: PNLF
EC+S Prompt (natural-language friendly with synonyms and extended context).

Base = "You are a professional ontology matcher. You need to answer different questions about
matching ontologies. Be precise."

Explainable = "You are helping researchers determine if two biomedical terms from different
ontologies refer to the same concept. You’ll be provided with a natural-language description,
possibly including synonyms and parent categories. Think like a domain expert, but explain your
judgment intuitively. Be precise"

Hierarchical = "You are a biomedical ontology expert. Your task is to assess whether two given
entities from different biomedical ontologies refer to the same underlying concept. Consider both
their semantic meaning and hierarchical context, including parent categories and ontological
lineage. Be precise."

Lexical = "You are a domain expert assisting in entity alignment across biomedical ontologies.
Each entity may include synonyms and category-level relationships. Use synonym information and
parent class semantics to decide whether the two entities mean the same thing. Be precise."

Listing 7: System prompts

C Additional supporting results

Figure 5 shows the correctness (Youden’s index, YI) of the LLM-based Oracles in assessing the
mappings in Mask (i.e., the subset of mappings identified by LogMap as uncertain). We tested,
over the 9 matching tasks, a total of 30 LLM-based Oracles (OrLLM ), combining the six prompt
templates introduced in Section 4.1 and the LLM models presented in Section 4.2.

Figure 6 shows the average YI values across ontology matching tasks, highlighting the differ-
ing levels of complexity in Mask for each task.

D Experiments on determinism

Figure 7 shows the variations of the YI index across 4 independent runs with all six prompt
templates on three ontology matching tasks using Gemini Flash 2.0.

Figure 8 illustrates the effect of different system prompts on the average YI index, revealing
performance differences across prompts.

E Experiments on statistical analysis

We conducted t-test and Wilcoxon statistical tests to analyse whether the performance differ-
ences reported in Table 4 and Figure 3 were significant (p-value < 0.05). Table 7 confirms that
LogMap+Or0 and LogMap+Or10 lead to significantly better results than both LogMap+OrLLM

GF2.0

and LogMap+OrLLM
GF2.5 (i.e., p < 0.01 in the “less” and “two-sided” settings with both t-test and

Wilcoxon). The comparison of LogMap+OrLLM
GF2.0 and LogMap+OrLLM

GF2.5 with LogMap+Or20

yields no significant differences (p > 0.1 in the two-sided setting). LogMap+OrLLM
GF2.0 and

LogMap+OrLLM
GF2.5 also significantly improve LogMap+Or30 and LogMap in automatic mode

(i.e., p < 0.05 in the ‘greater’ direction for both tests). Overall, the statistical tests support the
results and the discussion presented in Section 5.
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Figure 5: Diagnostic results (Youden’s index) by the LLM-based Oracles over the selected ontol-
ogy matching tasks. For example, Flash 2.5-PNLF

EC+S represents the LLM-based Oracle relying on
the Gemini Flash 2.5 model and evaluated with the natural-language friendly (NLF) prompts
with extended context (EC) and synonyms (S). We only completed a subset of experiments with
GPT-4o Mini as a reference.

F Additional experiments with Qwen models

Table 8 compares the results of Qwen3-1.7b and Qwen3-8b across the different prompt templates.
Qwen3-1.7b produces very low scores, typically diagnosing most mappings as negative. Qwen3-
8b performed well with the natural-language-friendly prompt templates. Structured prompts,
however, led to poor diagnostic capabilities, similar to Qwen3-1.7b.
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Figure 6: Average YI values per ontology matching task, reflecting the varying complexity of
Mask across tasks.

Figure 7: Determinism of Gemini 2.0 Flash across four runs for three matching tasks and all
prompt templates.
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Figure 8: Performance variation of Gemini 2.0 Flash with different system prompts.

System Comparison
t test Wilcoxon

greater less 2-sided greater less 2-sided

LogMap+OrLLM
GF2.0 vs LogMap+Or0 0.999 0.0001 0.0002 1.0 0.002 0.004

LogMap+OrLLM
GF2.0 vs LogMap+Or10 0.999 0.0003 0.0006 1.0 0.002 0.004

LogMap+OrLLM
GF2.0 vs LogMap+Or20 0.918 0.082 0.165 0.898 0.125 0.25

LogMap+OrLLM
GF2.0 vs LogMap+Or30 0.030 0.970 0.060 0.037 0.973 0.074

LogMap+OrLLM
GF2.0 vs LogMap 0.0007 0.999 0.001 0.002 1.0 0.004

LogMap+OrLLM
GF2.5 vs LogMap+Or0 0.998 0.002 0.003 1.0 0.002 0.004

LogMap+OrLLM
GF2.5 vs LogMap+Or10 0.991 0.009 0.018 0.998 0.004 0.008

LogMap+OrLLM
GF2.5 vs LogMap+Or20 0.797 0.203 0.406 0.787 0.248 0.496

LogMap+OrLLM
GF2.5 vs LogMap+Or30 0.037 0.963 0.074 0.049 0.963 0.098

LogMap+OrLLM
GF2.5 vs LogMap 0.020 0.980 0.041 0.027 0.981 0.055

Table 7: Statistical test results comparing LogMap, LogMap with OrLLM
GF2.0 and OrLLM

GF2.5, and
LogMap in combination with Oracles with different error rates (Or0, Or20, and Or30). Values
represent p-values for t-test and Wilcoxon signed-rank test in greater, less, and two-sided settings.

Prompt
Qwen3-1.7b on Mask Qwen3-8b on Mask

Se Sp YI Se Sp YI

P 0.096 0.972 0.068 0.082 1.000 0.082
PEC 0.058 0.981 0.039 0.055 0.991 0.045
PNLF 0.199 0.925 0.123 0.483 0.943 0.426
PNLF

EC 0.168 0.962 0.130 0.435 0.962 0.397
PNLF

S 0.411 0.811 0.222 0.825 0.764 0.590
PNLF

EC+S 0,414 0.906 0.320 0.688 0.793 0.481

Table 8: Performance of evaluated Qwen models in the anatomy task across the six prompt tem-
plates. Se=Sensitivity, Sp=Specificity, YI=Youden’s index. NLF=Natural-language friendly,
EC=Extended context, S=Synonyms.
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