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Abstract
Tabular data, often in the form of CSV files, plays

a pivotal role in data analytics pipelines. Under-
standing this data semantically, known as Semantic
Table Interpretation (STI), is crucial but poses chal-
lenges due to several factors such as the ambiguity
of labels. As a result, STI has gained increasing
attention from the community in the past few years.
Evaluating STI systems requires well-established
benchmarks. Most of the existing large-scale bench-
marks are derived from general domain sources and
focus on ambiguity, while domain-specific bench-
marks are relatively small in size. This paper in-
troduces KG2Tables, a framework that can con-
struct domain-specific large-scale benchmarks from
a Knowledge Graph (KG). KG2Tables leverages the
internal hierarchy of the relevant KG concepts and
their properties. As a proof of concept, we have

built large datasets in the food, biodiversity, and
biomedical domains. The resulting datasets, tFood,
tBiomed, and tBiodiv, have been made available for
the public in the ISWC SemTab challenge (2023 and
2024 editions). We include the evaluation results
of top-performing STI systems using tFood Such
results underscore its potential as a robust evalu-
ation benchmark for challenging STI systems. We
demonstrate the data quality level using a sample-
based approach for the generated benchmarks in-
cluding, for example, realistic tables assessment.
Nevertheless, we provide an extensive discussion of
KG2Tables explaining how it could be used to cre-
ate other benchmarks from any domain of interest
and including its key features and limitations with
suggestions to overcome them.
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1 Introduction15

Semantic Table Interpretation (STI) has recently witnessed increasing attention from the com-16

munity [41]. The goal of this process is to map individual table components, e.g., cells and columns,17

or even the entire table, to entities and classes from a target Knowledge Graph (KG) such as18

Wikidata [40], DBpedia [14], or Schema.org [24]. Such process is expressed in five STI-tasks:19

Cell Entity Annotation (CEA), Column Type Annotation (CTA), Column Property Annota-20

tion (CPA), Row Annotation (RA), and Topic Detection (TD). We give the details of each of21

them in Section 2. Since 2019, the Semantic Web Challenge on Tabular Data to Knowledge22

Graph Matching (SemTab)2, which is running for the sixth time this year, has aimed at setting23

a common standard for evaluating STI systems [29, 30, 21, 1, 13]. It poses various challenges24

and benchmarks3 every year. Most of the datasets are Automatically Generated (AG) except25

for the Tough Tables (2T) [20] and BiodivTab [11] datasets that have been manually curated.26

Most of these benchmarks, including 2T, are derived from the general domain. BiodivTab is an27

exception as it is a biodiversity-specific dataset. The SemTab results showed that this dataset was28

much harder to tackle than the domain-independent ones for state-of-the-art systems participating29

in the challenge [21]. We believe this is due to domain-specific challenges that general-purpose30

systems are ill-equipped to handle or require extensive tuning or training data. In order to improve31

performance on this vital group of datasets, we argue that a broader range of domain-specific32

test data is urgently needed. Due to the high effort in creation (in particular, the need for33

manual curation), BiodivTab is a relatively small dataset compared to others in the competition;34

this might be a drawback influencing evaluation results. Therefore, there is a need for larger,35

domain-specific datasets to be included within the community-driven evaluation campaigns. In36

this paper, we propose a technique that enables the creation of large-scale and domain-specific37

benchmarks without massive human intervention from a KG. We focus on three crucial domains:38

food, biodiversity, and biomedicine.39

An impressive number of STI systems have been developed over the past years to solve the40

common challenges of STI tasks. To encourage these systems to tackle STI tasks in a specific41

domain, we need to provide a systematic evaluation using well-established benchmarks following the42

FAIR (findable, accessible, indescribable, and reusable) [43] principles. In particular, benchmarks43

are needed that cover domains of high practical or scientific relevance. Thus, we introduce a44

domain-agnostic approach that constructs domain-specific tabular data benchmarks for STI given45

a KG. As a proof of concept, we introduce three novel tabular data benchmarks derived from46

Wikidata to evaluate existing STI systems.47

The main contributions of this paper, extending those of our previously published ISWC 202448

poster paper [2], are as follows:49

KG2Tables, a detailed overview of a general framework to construct domain-specific STI50

benchmarks. It leverages the internal hierarchy of related domain concepts from a KG.51

Novel large-scale tabular data benchmarks for three domains supporting five STI-tasks.52

2 https://www.cs.ox.ac.uk/isg/challenges/sem-tab/
3 We use benchmarks and datasets interchangeably in this paper.

https://www.cs.ox.ac.uk/isg/challenges/sem-tab/
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Figure 1 Inner-relationship examples. (a) Relational4, (b) Matrix5, and (c) Entity6

Evaluation of the generated benchmarks and a comparison with the state of the art. One of53

these datasets, tFood, was made available in the SemTab 2023 Challenge. The others, tBiodiv54

and tBiomed, have been included in the 2024 edition.55

tFood evaluation through the current top-performing STI-systems besides the SemTab 202356

participation.57

Data quality inspection for three subsets of the generated benchmarks.58

Extensive discussion of KG2Tables with respect to its limitations and potential future solutions.59

In addition to a detailed guide on how to use KG2Tables to create other benchmarks.60

The rest of this paper is organized as follows: We give the prior background of this work61

by explaining table types and STI tasks in Section 2. We provide an overview of the existing62

benchmarks and discuss their limitations in Section 3. We demonstrate our KG2Tables approach63

in Section 4. We evaluate our generated benchmarks in Section 5. We demonstrate the limitations64

of KG2Tables with an extensive discussion in Section 6 We conclude this work and present future65

directions in Section 7.66

2 Background67

Tabular Data68

A table could be just a layout or encapsulate a certain amount of information [42]. The former69

is used for visualization (layout table). However, the latter expresses a topic or thing (genuine70

table). Genuine tables can be categorized along two dimensions [38, 34]: (i) Inner-relationship71

dimension: a table could be Relational (Figure 1(a)), Matrix (Figure 1(b)), or Entity (Figure 1(c)),72

(ii) Orientation dimension: it considers the direction of relationships inside a table, it could be73

horizontal, vertical, or matrix. Entities are described row-wise in horizontal tables (Figure 1(a)).74

They are described by a column in vertical tables (Figure 1(c)). Matrix tables cannot be interpreted75

row by row or column by column but rather cell by cell while simultaneously considering both76

horizontal and vertical headers as given by Figure 1(b). For example, our dataset tFood contains77

both Horizontal Relational Tables and Entity Tables.78

TGDK
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Country Area Capital

Egypt 1,010,408 Cairo

Germany 357,386 Berlin

9,826,675 Washington, D.C.

Topic 
Detection 

(TD)

Column Property Annotation (CPA)

Row 
Annotation 

(RA)

Cell Entity 
Annotation 

(CEA)

Column Type 
Annotation 

(CTA)

Figure 2 A summary of Semantic Table Interpretation (STI) tasks.

Matching Tasks79

State-of-the-art STI tasks propose ways to annotate tabular data semantically and, thus, facilitate80

a potential transformation into a KG. Figure 2 gives an overview of the five most common STI81

tasks. The tasks are described below (the examples assume Wikidata is the target KG):82

1. Cell Entity Annotation (CEA) aims at linking a table cell value to a KG entity. In the case of83

Figure 2, ‘Egypt’ would be linked to ‘wd:Q79’7.84

2. Column Type Annotation (CTA) maps the entire column to a semantic type. In the example85

of Figure 2, it annotates the highlighted column to ‘wd:Q6256’ (country).86

3. Column Property Annotation (CPA) links a column pair (subject-object) with a semantic87

property from the target KG. In Figure 2, country and capital columns would be linked88

through ‘wdt:P1376’ (capital) from the target KG.89

4. Row Annotation (RA) maps the entire row to a KG entity. Its output is different from the90

first task since the subject column may be absent as in the example of Figure 2. Row to91

instance would be able to detect that the entire third row refers to ‘wd:Q30’ (United States of92

America)8.93

5. Topic Detection (TD) classifies the entire table to a topic. Such topic could be a KG class or94

entity. ‘wd:Q6256’ (country) would be the solution for the table in Figure 2.95

SemTab Challenge96

The Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab) defines97

a standard framework to evaluate STI approaches. It has been held annually since 2019 and so98

far co-occurred along with the International Semantic Web Conference (ISWC) and Ontology99

Matching (OM) workshop. During the series of the challenge, various tasks of the STI are posed100

to participants including CEA, CTA, and CPA tasks with various synthetic benchmarks from the101

general domain [29, 30, 21, 1, 20, 27] and realistic domain-specific datasets [11, 12]. The SemTab102

challenge had a large impact on the community since the highest number of STI systems have103

been developed and took part in the challenge during its years [34].104

3 Related Work105

In the following, we give an overview of a common generator for STI benchmarks. In addition, we106

discuss the current state-of-the-art and most widely used benchmarks for STI and their limitations.107

4 https://en.wikipedia.org/wiki/Four_Asian_Tigers#Technology
5 https://en.wikipedia.org/wiki/Whistled_language#Lack_of_comprehension
6 https://en.wikipedia.org/wiki/Charles_Bridge
7 We use the following prefixes throughout this paper: wd: http://www.wikidata.org/entity/, wdt: http:

//www.wikidata.org/prop/direct/
8 RA is different in Entity Tables. It maps the row to a property instead of an instance.

https://en.wikipedia.org/wiki/Four_Asian_Tigers#Technology
https://en.wikipedia.org/wiki/Whistled_language#Lack_of_comprehension
https://en.wikipedia.org/wiki/Charles_Bridge
http://www.wikidata.org/entity/
http://www.wikidata.org/prop/direct/
http://www.wikidata.org/prop/direct/
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3.1 Existing Datasets Generators108

SemTab 2019 [29] introduced a new collection of benchmarks created using an automated data109

generator. The data generator takes a KG with a SPARQL endpoint as input and first performs110

profiling to identify classes, properties, and their characteristics. It then uses the profiling output111

to generate tables where: a) each table contains a set of entities of a particular class type (e.g.,112

person), b) the first column in each table contains an identifier label (e.g., person name), c) other113

columns in each table contain property values (e.g., age or place of birth), and d) errors and114

variations are introduced in each cell value to make the annotation task more challenging. Each115

generated table comes with ground truth annotations for CEA (mapping each label to the KG116

entity), CTA (mapping each column to the associated class), and CPA (mapping the first column117

and every other column to the property used to populate the column contents). The SemTab 2019118

generator retrieves only direct properties for each class without considering the subclass hierarchy119

in the KG. The primary mechanism for data generation in the generator is randomly selecting120

property sets and running SPARQL queries to find those that produce complete tables with no121

null values.122

3.2 Existing Benchmarks123

In the following, we discuss the most common benchmarks that are used for evaluating STI124

systems with an overview of their limitations. We provide comparison tables for such benchmarks,125

including our newly generated ones in Table 2 and Table 3 (see Section 5).126

Limaye [33] is one of the earliest benchmarks developed for STI tasks. It aims to annotate127

web tables using the YAGO KG. The dataset is divided into four subsets according to the data128

source, the labeling method, and application scenarios. Three subsets are manually labeled, while129

the fourth one is automatically generated. Altogether, it constructs the final benchmark with130

428 annotated tables. Annotation errors were reported for the automatically labeled subset [35],131

which were corrected by Bhagavatula et al. [17] in 2015. Later on, in 2017, Efthymiou et al. [23]132

adapted the disambiguation links to the DBpedia KG.133

T2Dv2 [32] is the recent edition of the T2D [39] gold standard where annotation errors are134

fixed. It is widely used by STI systems like Limaye et al. [33] and others. Up to 2019, T2Dv2135

along with Limaye were the main benchmarks used by STI systems. T2Dv2 covers the tasks of136

row-to-instance (RA in our context), attribute-to-property (maps to our definition of CPA), and137

table-to-class (TD following our definition), for 779 tables that are derived from WebTables [18]138

where the target KG is DBpedia. In addition, T2Dv2 provides extensive metadata, such as the139

context of the table and whether the table has a header.140

ToughTables (2T) [20] is a set of 180 tables that are annotated from Wikidata and DBpedia.141

The first use of 2T was during SemTab 2020 fourth round. It focuses on the ambiguity among142

entity mentions in a way that makes it hard to disambiguate by a human expert. The authors did143

not rely on the automatic generation of the dataset only but also provided manual curation of144

such annotation to avoid false positives while evaluating a matching algorithm. It contains real145

tables that reflect a knowledge gap between the target KG and an input table. Misspellings are146

frequent and intense, which is useful for testing the weight of lexical features an algorithm could147

use. In addition, a large number of rows is used to evaluate the system’s performance.148

GitTables [27] is a subset of the original dataset [26] that was introduced in SemTab 2021.149

It is a collection of 1,101 tables crawled from GitHub. They are annotated with DBpedia and150

schema.org for the CTA task. GitTables poses a special case of CTA where the target annotation151

match is not only a KG class but also a KG property. However, we analyzed the provided CTA152

targets; we found GitTables has a sparse table structure leading to empty or almost empty columns,153

TGDK
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making the CTA task very challenging.154

SemTab 2019-2020 [29, 30] are the first and second benchmarks that were introduced by155

SemTab challenge in 2019 and 2020, respectively. Both are large-scale datasets automatically156

generated (AG) from DBpedia and Wikidata, consisting of 15k and 131k tables, respectively.157

The common data issues in both benchmarks are misspellings and ambiguity among table rows.158

These benchmarks also focus on testing the ability of a system to scale.159

HardTables 2021-2022 [21, 1] are the benchmarks that were introduced by SemTab’s third160

and fourth editions in 2021 and 2022. They also focus on misspellings and ambiguities. Each161

consists of 9k tables generated using an improved version of the data generator introduced in 2019162

[29] that creates more realistic-looking tables. Tables that are correctly annotated by baseline163

methods are removed to create a harder dataset.164

WikidataTables [13] is the benchmark that was published during SemTab’s fifth edition165

in 2023. This dataset is also generated by an improved version of the 2019 data generator and166

consists of 10k tables. However, it is generated using a configuration that resulted in a large167

number of very small tables with a high level of ambiguity for entity columns. This was done by168

selecting labels that can refer to more than one entity in Wikidata.169

BioTables [36] is a dataset that is used during SemTab 2021. It is derived from the biomedical170

domain and consists of 110 tables. Its unique characteristic is that it contains columns with very171

long descriptions from Wikidata.172

BiodivTab [11, 12] is a biodiversity-specific benchmark manually annotated using Wikidata173

and DBpedia concepts. It consists of 50 tables that are derived from real and augmented tables.174

BiodivTab featured new challenges besides the common ambiguity issue and spelling mistakes,175

like the nested entities in a single cell and the synecdoche; biodiversity scientists might use a city176

name instead of a target river or an ecosystem name. For example, we found an occurrence for177

Kentucky (city) to represent Kentucky River (river).178

Limitations of Existing Benchmarks179

By analyzing these benchmarks, we found that all of them except BioTables and BiodivTab are180

derived from the general domain. This means that some very difficult challenges faced in certain181

domains could be significantly underrepresented or even absent in such datasets. In addition, they182

focus mainly on ambiguity and spelling mistakes. However, as highlighted in BiodivTab, real-world183

datasets adopt a particular domain feature and distinctive challenges other than ambiguity. In184

addition, all of them are synthetic and AG datasets with two exceptions, 2T and BiodivTab. Both185

are relatively small as they consist of 180 and 50 tables, respectively.186

4 KG2Tables Approach187

KG2Tables accepts a list of related domain concepts in a CSV file. It parses these concepts to188

construct a tree structure of these concepts. In Wikidata, domain concepts form a graph structure189

since the KG allows that. However, KG2Tables process each relevant concept only once. Figure 3190

demonstrates the recursive methodology of KG2Tables with a configured four levels of depth. We191

construct the respective tree structure using the internal hierarchy of the input concepts. i.e., in192

Wikidata, we have included all instances and subclasses via SPARQL queries.9 We determined193

both using via wdt:P31, instance of and wdt:P279, subclass of. We use the term ‘Children’194

9 Section 5 provides concrete examples of how a non-exhaustive list of input concepts can be defined for a
specific domain.
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Instances1Subclasses1

Instances

Domain Concepts

Construct Tree Structure

Subclasses2

InstancesSubclasses3

InstancesSubclasses4

Depth Level = 4

Instances

Instances2

Instances3

Instances4

Figure 3 Recursive Tree Generation. The color-coded boxes represent retrieved children for a given
level, e.g., Gray boxes represent first-level children.

to generalize related instances or subclasses. The tree structure is different in DBpedia, for195

example, where, the internal hierarchy is determined via the predicate rdf:type only. We applied196

a deduplication step since the overall instances and subclasses may overlap. Such overlap may197

also occur across different levels of the tree.198

Figure 4 extends Figure 3 with the logical steps to depict the approach we developed to199

construct domain-specific benchmarks. In a given depth level of the tree structure, it retrieves200

the current children of domain concepts and then follows with four steps: (1) Create Horizontal201

Tables and (2) Create Raw Entity Tables: we constructed both types of tables based on the202

properties of the current children; these tables contain the solutions of all STI tasks. (3) Refine203

Tables: we revised the collected data and applied several steps to construct the final tables. (4)204

Format Benchmark: we separated tables from solutions and targets to create a complete set of205

STI tasks. In the following, we explain the individual steps.206

4.1 Create Raw Horizontal Tables207

We retrieved both instances and subclasses for each level using a recursive method for each concept.208

For example, at the first level, for each concept in the input domain, we identified three folds:209

direct instances, subclasses, and instances of subclasses. For each fold, we applied two kinds of210

table generation methods to construct horizontal relational tables: a description-based method211

and properties-based methods.212

Descriptions-based Method213

We have collected long descriptions for all children for each fold in the three data folds. Some214

descriptions are unavailable in the KG, thus yielding an empty row in the final table. The following215

Equation 1 describes this method. It creates a table with a single column where each row holds a216

long description, Desc(ci), of the retrieved ci of the current concept in a data fold F .217

Trows = ∪|F |
i=0Desc(ci), ci ∈ F (1)218

Properties-based Methods219

We retrieved all properties for each child, grouping them by data fold and excluding labels and220

ID-related fields, e.g., Google ID. This set of properties is called excluded properties Pexc. This221

TGDK
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Current Children

Create Horizontal Tables

Refine Tables

Create Entity Tables1 2

3

4

CEA CTA CPA RA TD
filename col_id row_id

… … …

filename col_id

… …

filename sub_id obj_id

… … …

filename row_id

… …

filename

…

targets tablesgt

Format Benchmark

Domain Concepts

Construct Tree Structure

Depth Level

Figure 4 KG2Tables Generator Approach

filtration ensures that the lexical table context is provided. We then manipulate the remaining222

properties in three ways, leading to three table versions. We explain these methods in the223

following, where a common filtration step for each property pj not in the excluded properties set224

Pexc. Multi-valued properties are converted as comma-separated fields in the generated table file.225

i.e., the property ‘wdt:P527 - has part(s)’ is usually given by multiple values.226

We demonstrate examples entities, a set of current children (C1-C5) of a recursive call are227

connected with a set of properties (p1-p3) as indicated in Figure 5 (a). We keep this as a running228

example for the following generation methods.229

(i) Exclusive Selection: This version is created by column-wise stacking for all retrieved230

properties, pj for each child ci in the data fold F . This strategy creates a large table in terms of231

size (rows and columns) but sparse in terms of cell content. The following Equation 2 describes232

this method. It creates a table with the total number of children’s properties in a data fold F233

columns. Figure 5 (b) represents an output of this method. It keeps listing all properties without234

considering any importance or frequency of such properties.235

Trows = ∪|F |
i=0 ∪|Pci

|
j=0 pj , ci ∈ F, pj ∈ Pci , pj /∈ Pexc (2)236

(ii) Random Selection: This version is created by randomly dropping properties from all the237

created versions above using the exclusive selection. To ensure sufficient context in the resultant238

table, we applied another filtering step to drop a table row if it has less than two properties.239

Equation 3 explains this method, where it randomizes10, Rand dropping 50% of the full set of240

properties, i.e., table columns. Figure 5 (c) represents an output of this method. It assumes that241

the dropped column is the first column of p1. Note that the first row representing C1 is also242

removed since it would be empty given only the remaining properties p2 and p3. Such an output243

10 For reproducing the results of this method since it relies on the ‘random’ function, we set the seed to the
random module to 42.
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C1

C2

C3

C5

p1

p2

p3

p1 p2 p3

C1

C2

C3

C4

C5

p1 p2 p3

C1

C2

C3

C4

C5

p1 p2 p3

C1

C2

C3

C4

C5

p1 p2 p3

C4

C5

p2 p3

C2

C3

C4

C5

(a)
(b)

(c)(d)

C4

Figure 5 A summary of the properties-based generation methods. (a) Example entities as a graph
(C1-C4). (b) 1-1 mapping of children entities set in a horizontal table (Exclusive Selection). (c) Randomly
dropped column of a property (Random Selection). (d) Keep entities with the maximum number of
properties only (Common Selection).

is a reduced version in terms of table columns due to the randomized selection of these columns.244

It might also reduce the number of table rows due to the filter function of dropping children with245

less than two properties.246

Trows = ∪|F |
i=0Rand(∪|P |

j=0pj , 0.5), pj ∈ Pci
, pj /∈ Pexc, ci ∈ F (3)247

(iii) Common Selection: This version is created by grouping children in one data fold with the248

maximum number of shared properties. Equation 4 describes this creation method, retrieving249

the maximum, Max number of shared properties set, P for all children, ci in a data fold F . The250

resultant table from this method is relatively small in size but dense in cell content, i.e., the table251

contains no empty cells. Figure 5 (d) represents an output of this method as the intersection of252

all entities that share the maximum number of properties, three properties.253

Trows = Max(∩|F |
i=0Pci), ∀|Pci

|
j=0 pj /∈ Pexc, ci ∈ F (4)254

The five STI tasks, introduced in Section 2, are supported in the horizontal relational tables.255

Raw tables at this step include the solution of the supported tasks, except for CTA. We generated256

these solutions separately in the final step. In raw tables, we did not include a subject column;257

alternatively, we added a synthetic ID column. CPA targets ask for detecting properties that link258

that (subject) column with other (object) columns. CEA targets require annotation for object259

columns’ cells. We keep cell annotations for all entities as multi-valued.260

4.2 Create Raw Entity Tables261

The generation of this table type, entity table is more straightforward in development than in262

horizontal relation tables. For each child in the retrieved children per concept, we have listed its263

properties and have applied the general filtering function, i.e., excluding labels and IDs. Afterwards,264

we have saved such a child to a CSV file with an entity orientation, where an entity table should265

TGDK
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have at least two properties. Additionally, we added a common description of the parent category266

to all its belongings. The added long text provides an entity table with more lexical context.267

The supported STI tasks for entity tables are (i) TD links the entire table to a KG entity. (ii)268

RA annotates a row to a single property. (iii) CEA maps a single cell that has a property value269

to an instance.270

4.3 Refine Tables271

The objective of this task is to obtain the final output of the benchmark, and it contains two272

steps. Raw table headers containing either the term ‘description’ or the original properties names.273

I.e., in properties-based generation methods, table columns represent children’s properties. We274

have anonymized these values by changing them to col1, col2, etc. Another indirect manipulation275

is renaming the header to another value. This technique requires manual effort. For example,276

a column with header ‘country of origin’ would be renamed to ‘originated’. Another possibility277

for header manipulation is to abbreviate it. For example, the same example is changed to ‘C.278

of Origin’ or ‘CoO’. For this task, we can also leverage a Large Language Model (LLM), e.g.,279

GPT-4 [37] to suggest realistic abbreviated labels for a given column header.280

4.4 Format Benchmark281

During the raw table generation phase, we embedded the solution of STI tasks in the table itself282

except for CTA. For example, the original table name is the solution of TD. In addition, we283

created an extra column with the ground truth of the RA task. In this step, we create the final284

format of the benchmark. We create final tables, their solutions ‘Ground truth data (gt)’, and285

targets, i.e., indicate what to solve for each task. Targets are given to STI systems in case the286

gt data is hidden. They are used to guide these systems on what to annotate without providing287

the actual solutions or annotations to them. During the gt creation, we extracted solutions from288

the raw tables and created separate files that list the gt data with an indication of the target289

file, column, row, or cell. From this gt, we create the targets for the required tasks by dropping290

its solution column. For the CTA task, we collected cells’ annotations for columns and queried291

the KG for their semantic types. We collected all types with at least 50% support of the column292

cells. To enable a partially correct solution for CTA, we queried the ancestors and descendants for293

the collected types using the same technique introduced in SemTab 2020 [30]. For the CEA task,294

since some cells are created using multiple properties, we kept a ground truth for each individual295

if it exists.296

5 Benchmark Generation using KG2Tables297

In this section, we present, analyze, and evaluate benchmark data generated using KG2Tables.298

We give an overview of the generated benchmarks with a detailed evaluation of the tFood dataset299

using STI systems. We also provide information about the setup of KG2Tables and the challenges300

we faced during the creation of the large-scale benchmarks, i.e., the need for tree pruning. Finally,301

the release and availability of the generated artifacts are also provided.302

5.1 Setup303

We selected the Food, Biodiversity, and Biomedical domains as examples to generate domain-304

specific STI benchmarks. However, KG2Tables is not limited to these domains since it accepts305

any given domain concepts. We set the maximum levels of depth to 10 of the KG2Tables for the306
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first two domains while we set it to 5 for the biomedical domain. These experiments yielded three307

huge datasets: tFoodL, tBiodivL, and tBiomedL.308

Concepts Determination309

We needed to provide KG2Tables with domain concepts for each selected domain. For the310

Food domain, in Wikidata, ‘food (wd:Q2095)’ had 949 instances and 2650 subclasses during the311

construction of the first benchmark in March 2023. Thus, it is a rich source for creating tables312

from it. To enable manual verification and revision and ensure quality, we limited the scope of313

searching for domain-related concepts to those commonly found in a typical food menu. For314

example, we search Wikidata for food, breakfast, lunch, dinner, drink, etc. At the end of this step,315

we collected 64 food-related concepts.316

For the other two domains, we leveraged only CTA annotations from existing benchmarks317

as domain concepts. This ensures domain specificity as well. For the Biodiversity domain, we318

obtained the unique semantic types from BiodivTab [11]. We omitted the general domain classes319

from BiodivTab. For example, we removed ‘airline (wd:Q46970)’, and ‘airport (wd:Q1248784)’320

to ensure domain specificity from the beginning. This resulted in 81 unique semantic types321

used as categories. For the Biomedical domain, we retrieved the unique semantic types from322

BioTables [36]. This list contains seven semantic types, including ‘protein (wd:Q8054)’ and very323

high-level concepts like ‘entity (wd:Q35120)’.324

Data Folds & Sampling325

We applied validation/test splits where the validation set includes 10% of the total number of326

tables. By this means, it allows training and testing for annotation systems and it becomes easier327

to publish them online. For those too-large benchmarks, we applied a sampling strategy, i.e.,328

create a 1% sample of each entity and horizontal tables to be published online.329

5.2 Tree Pruning and Convergence330

The target KG contains different tree sizes based on the selected domain concepts. For instance,331

the biomedical domain contains general concepts, e.g., entity (wd:Q35120) contains millions of332

instances. Thus, tree pruning is needed.333

Figure 6 depicts the tree we leveraged to construct tFood. It also highlights the effective334

depth that is included during the creation of the corresponding benchmark. tFood and tFoodL335

are created with 2 and 8 levels of the tree, respectively. This also indicates that constructed336

benchmarks contain all related data (instances and subclasses) by convergence before reaching the337

maximum level of depth without any tree pruning applied.338

Figure 7 and Figure 8 illustrate the tree to construct both tBiodiv and tBiomed. We339

applied a tree-pruning technique for both benchmarks by setting the maximum number of340

instances/subclasses to 100. tBiomed did not converge where the maximum depth is reached even341

after applying tree pruning. This is due to the huge number of instances retrieved, e.g., ‘protein342

(Q8054)’ contains 1,002,653 instances in Wikidata as of the time of writing in November 2023. So,343

to construct a biomedical-specific benchmark, we set the maximum depth to 5 levels instead of 10344

to yield into tBiomedL.345

5.3 Benchmarks Overview346

Table 1 summarizes the current state of the three experiments. tFoodL is 3x times larger than347

tFood by leveraging more tree levels instead of two, as in tFood. tFoodL contains all the data348

TGDK
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Table 1 Summary of the generated benchmarks

Table Statistics Depth

Benchmark Entity Horizontal Total Config. Effective Pruning Published Disk Size

tFood 8,492 4,737 13,229 2 2 - val/test 71 MB
tFoodL 23,976 19,279 43,255 10 8 - val 144 MB

tBiodiv 15,391 42,035 57,426 2 2 100 val/test* 122 GB
tBiodivL 60,803 161,550 222,353 10 9 100 sample 312 GB

tBiomed 10,567 16,211 26,778 2 2 100 val/test* 1 GB
tBiomedL 310,951 549,528 860,479 5 5 100 sample 27 GB

of the internal hierarchy of eight levels without any tree pruning. The last two levels (9 and 10)349

yielded no results We set the tree pruning threshold to 100 for both biodiversity and biomedical350

benchmarks. This threshold will limit the maximum number of instances/subclasses to be retrieved.351

The former, tBiodivL produced more than 220k tables leveraging nine levels of the tree, where352

the last level produced no results. The latter, shown in tBiomed, failed to converge when we353

set the maximum level to 10; thus, we reduced the maximum depth into five levels, yielding354

more than 860k tables leveraging five levels of the tree. We constructed relatively smaller-sized355

benchmarks for both domains using only two levels: tBiodiv and tBiomed. However, tBiodiv is356

still large, 122 GB in size. Both dataset folds, validation and test, are available online, but the357

test fold currently has no ground truth data. We plan to publish it as well by the end of 2024.358

We published a sample online for those datasets that were too large (as a proof of concept). This359

sample contains 1% of the resultant benchmark data.360

Table 2 describes the existing benchmarks in terms of their domain, original data source, and361

target KG. Our generated benchmarks are the only domain-specific datasets that are derived362

from a given KG (Wikidata in this case). Table 3 shows the statistics of the state-of-the-art363

benchmarks compared to the horizontal tables from our generated datasets. It shows their number364

of tables, average rows, columns, and their coverage for STI tasks. From this table, our generated365

benchmarks are the only benchmarks that cover all STI tasks. In addition, they are large-scale366

domain-specific datasets compared to BioTables and BiodivTab. E.g., tBiomedL contains more367

than 500k tables, to the best of our knowledge, this is the largest benchmark for STI tasks. This368

enriches the community with large-scale benchmarks that cover the entire set of STI. In addition,369

KG2Tables facilitates the construction of new domain-specific tabular data benchmarks since it is370

independent of the domain of interest and easily adapted to different underlying KGs.371

5.4 Generated Tables & Domain Specificity372

In this section, we demonstrate randomly generated tables by KG2Tables in the three domains373

we have experimented with to explore whether the generated tables adhere to a specific domain.374

Figure 12 represents a randomly tFood generated table. It contains encoding issues, e.g., in row375

42, that should be solved first before systems can annotate such a table. This table groups a376

set of drinks (wd:Q40050). Figure 13 and Figure 14 depict random examples from tBiodiv, and377

tBiomed datasets, respectively. Both tables are much smaller regarding row number compared378

to the tFood example. The former represents a set of tidal rivers (wd:Q1074069). The latter379

demonstrates a set of taxons (wd:Q16521). Given the solutions of TD task as shown above, the380

three examples demonstrate domain specificity for each experimental domain.381

TGDK
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Table 2 Generated benchmarks comparison with existing benchmarks in terms of data sources, domain,
and corresponding targets annotation for tFood and existing benchmarks. ST19 - ST20 (SemTab 2019-
2020). HT21 - HT23 (HardTables 2021-2022). WT23 (WikidataTables 2023).

Dataset Domain Data Source Target Annotation

ST19 General DBpedia DBpedia
ST20 General Wikidata Wikidata
HT21-22 General Wikidata Wikidata
WT23 General Wikidata Wikidata

2T General WebTables, DBpedia, Wikipedia Wikidata, DBpedia

BioTables Biology Gene Ontology, Uniprot Wikidata

GitTables General GitHub DBpedia, Schema.org

T2Dv2 General WebTables DBpedia
Limaye General Wikipedia DBpedia

BiodivTab Biodiversity BExIS, BEFChina, data.world Wikidata, DBpedia

tFood(L) Food Wikidata Wikidata
tBiodiv(L) Biodiversity Wikidata Wikidata
tBiomed(L) Biomedical Wikidata Wikidata

Table 3 Horizontal Tables Comparison with existing benchmarks in terms of tables statistics and
target annotations. ST19 - ST20 (SemTab 2019-2020). HT21 - HT23 (HardTables 2021-2022). WT23
(WikidataTables 2023). Git-ST21 is the published version of GitTables during SemTab 2021. *_W, *_D,
and *_Sch use Wikidata, DBpedia, and schema.org.

Table Statistics Target Annotations

Dataset KG Tables Avg. Rows
(± Std Dev.)

Avg. Cols
(± Std Dev.)

CEA CTA CPA RA TD

ST19 D 14,966 36 ± 56 5 ± 3 986, 370 22,176 17,070 NA NA
ST20 W 131,471 20 ± 2188 4 ± 1 2,930,722 93,483 236,003 NA NA

HT21 W 8,957 11 ± 7 3 ± 1 106,389 9,398 14,531 NA NA
HT22 W 8,997 6 ± 1 3 ± 1 51,587 9,683 10,366 NA NA
WT23 W 9,917 6 ± 2 3 ± 1 64,542 12,331 14,413 NA NA

2T W 180 1, 080 ± 2, 798 5 ± 2 663,655 539 NA NA NA
2T D 180 1, 080 ± 2, 798 4 ± 2 636,185 535 NA NA NA

BioTables W 110 2, 448 ± 193 6 ± 1 1,391,324 656 546 NA NA

Git-ST21 D 1,101 58 ± 95 16 ± 12 NA 2,516 NA NA NA
Git-ST21 Sch 1,101 58 ± 95 16 ± 12 NA 720 NA NA NA

T2Dv2 D 779 85 ± 270 5 ± 3 NA NA 670 26,106 237

Limaye D 428 24 ± 22 2 ± 1 NA 84 NA NA NA

BiodivTab W 50 259±743 24±13 33,405 614 NA NA NA
BiodivTab D 50 259±743 24±13 33,405 569 NA NA NA

tFood W 4,388 23±87 6±6 249,128 18,578 35,894 181,210 4,737
tFoodL W 19,279 16±89 5±4 391,867 35,453 64,148 288,237 19,279
tBiodiv W 42,035 20±23 13±15 4,975,112 188,008 467,979 817,230 42,035
tBiodivL W 161,550 17±22 10±11 8,965,006 543,272 1,337,533 2,537,059 161,550
tBiomed W 16,211 17±25 8±8 556,397 51,229 107,864 260,990 16211
tBiomedL W 549,528 17±24 7±6 20,010,526 1,518,523 3,041,404 8,835,762 549,528
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5.5 tFood Detailed Evaluation382

In the following, we give a statistical overview of the tFood benchmark and an evaluation of383

well-known STI systems participating in the 2022 and 2023 editions of SemTab and beyond.384

Insights385

Figure 9 depicts the distribution of the horizontal relational tables per generation method.386

Properties-based methods (shared properties and descriptions) yielded the most number of tables387

due to their high number of combinations. Figure 10 represents the distribution of the top 10388

concepts used to generate entity tables via instances and subclasses, respectively. The ‘dish’389

category resulted in the highest number of tables in both cases. We calculated these numbers390

after removing the duplicates; thus, we have unique tables. This figure proved the need to gather391

tables from both instances and subclasses since they provided different sets of tables.392
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Figure 12 tFood LHAK3D277.csv table - TD solution: (drink - wd:Q40050)

Figure 13 tBiodiv IPS06100807I021.csv table - TD solution: (tidal river - wd:Q1074069)

Horizontal Tables Evaluation393

To gain a first impression of the tFood benchmark, we contacted the main authors for s-elbat [19]394

and DAGOBAH [28] to solve the three tasks of STI (CEA, CTA, and CPA) on the horizontal395

tables of the tFood benchmark for comparison reasons. Additionally, we set up JenTab [10] since396
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Figure 14 tBiomed TJY060703I051.csv table - TD solution: (taxon - wd:Q16521)

Table 4 tFood: Entity tables Scores comparison of annotation systems

System CEA (HardTables) CEA (tFood) TD (tFood)

TorchicTab 0.830 0.686 0.726
TSOTSA 0.627 0.237 0.156

the primary author of this paper is one of the main developers of that system. We included the397

results of TSOTSA [31] and Kepler-aSI [15, 16] since they solve the three datasets. All these398

systems are well-established for STI and top performers in the SemTab challenge. We compare399

their scores with those published on HardTables and BiodivTab in 2022. Figure 1111 shows the400

systems’ scores using the three datasets. The highest scores by all systems come from HardTables,401

which is an AG and derived from the general domain. BiodivTab, a biodiversity-specific dataset,402

yields the second-highest scores by all systems. The lowest scores by all systems come from the403

proposed tFood benchmark. This shows the novel challenges the tFood dataset brings to the404

community on a very important domain where tool support is much needed.405

Entity Tables Evaluation406

We gained an insight into tFood entity tables as well through the achieved scores by SemTab407

2023 participants: TorchicTab [22] and TSOTSA [31]. Table 412 demonstrates their F1-scores on408

the tFood entity tables test fold. Both systems achieved lower scores on tFood (CEA) compared409

to their performance on the general domain HardTables dataset. TorchicTab and TSOTSA lost410

14.4% and 39%, respectively, from their F1 scores compared to HardTables. Such results also411

confirm the unique challenges of the tFood benchmark as in the horizontal tables evaluation above.412

5.6 Release and Availability413

Resources should be easily accessible to allow replication and reuse. We follow the FAIR guidelines414

to publish our contributions [43]. We released KG2Tables [9]13 and datasets (tFood(L) [7, 8],415

tBiodiv(L) [3, 4], tBiomed(L) [5, 6]) in such a way that researchers in the community can416

benefit from them. To reach a broader audience the tFood benchmark was integrated within the417

SemTab 2023 edition.14 We plan to include the other datasets within SemTab 2024. Our code418

and datasets are released under MIT and Creative Commons Attribution 4.0 International (CC419

BY 4.0), respectively.420

11 We omit the BiodivTab-CPA from the figure since the dataset does not support it.
12 TorchicTab results are calculated after the SemTab challenge and are not published in [22, 13]
13 https://github.com/fusion-jena/KG2Tables
14 https://sem-tab-challenge.github.io/2023/
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Table 5 Summary of the generated subsets of the three benchmarks for quality inspection activity

Subset Selected Concept Val/Test

tBiomed wd:Q2996394, biological process 9/86
tBiodiv wd:Q7432, species 9/90
tFood wd:Q746549 dish 12/111

5.7 Maintenance and Update421

We plan to maintain the published artifacts from this paper by uploading newer versions of the422

dataset to the same Zenodo repositories. We expect changes for such datasets in case of bug423

fixes, ground truth data modifications, targets, etc. Regarding the code, we plan to apply the424

same methodology of monitoring updates; we will release new code versions and upload them to425

Zenodo as well, while the most recent version of the code is found under our GitHub repository.426

In addition, we will publish a ‘change log’ that describes the changes that have been applied to a427

specific dataset or in the code.428

Since KGs are dynamic and subject to frequent changes, we should point to a specific version429

or a KG dump for benchmark reproducibility and allow a fair assessment to STI systems that430

solve these benchmarks. Thus, we also upload specific dumps of KG, e.g., Wikidata, to Zenodo.431

For example, the early Wikidata dump of March 2024 [25] could be used to either reproduce the432

results of KG2Tables or to be used by STI systems to solve the generated benchmarks.433

5.8 Data Quality Inspection434

We relied on STI systems to directly solve our generated benchmarks, and we used their obtained435

scores as a metric to evaluate such benchmarks. However, after these experimentations, either in436

the early bird evaluation or in SemTab 2023 (see Section 5.5, we decided to investigate the quality437

of the generated tables as well.)438

Since the generated benchmarks could reach up to 500K tables, inspecting the individual tables439

manually is impossible. Thus, to gain an overview of these benchmarks, we constructed smaller440

subsets using the most frequent semantic class, e.g., top CTA annotation for each of them, and441

re-ran the generator using a maximum depth level of two and maximum number of instances (tree442

pruning) is five. These subsets are summarized in Table 5 demonstrating the selected concept and443

validation test splits number of tables. We manually checked the validation split for each of these444

benchmarks, which is, in total, 30 tables with their corresponding ground truth annotations.445

In this quality inspection experiment, we aim to evaluate these subsets concerning three446

dimensions of data quality: 1) Diversity of the generated data, e.g., does the generator manage to447

capture other related domain concepts, or does it stick to the provided domain concepts? Another448

aspect is comparing null annotations to the retrieved types, e.g., NILs. 2) Quality of annotations,449

i.e., if a required annotation is impossible to solve, it is wrongly labeled in the ground truth or too450

abstract and not that useful. Finally, 3) Quality of the table structure, e.g., if there are duplicate451

tables, rows, or columns. Table 6 summarizes these findings by showing the number of tables per452

subset that fulfills the abovementioned requirements.453

To assess the generated topics’ diversity, we counted unique table types from the ground truth454

data of the TD task. While NILs represent the count of the null annotations versus the actual455

semantic types for CTA annotations. For this aspect, the generator found more related concepts456

using only two levels for both tBiomed and tFood subsets. For tBiodiv, the generator needs457

more levels to explore to include more diverse data. The NILs metric balances the number of null458

annotations and actual semantic types for the tBiomed subset. This is much better in the other459

two domains, where the dominant types are actual semantic classes.460
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Table 6 Summary of quality checks per subset

Diversity Annotations Structure

Subset Topics NILs Wrong Impossible Abstract Tables Columns Rows Cells

tBiomed 2 10/13 0 0 4 0 0 0 3
tBiodiv 1 0/5 0 1 1 0 0 0 4
tFood 3 2/19 0 1 3 0 0 0 5

Table 7 Summary of RA and CTA ground truth quality checks per subset

Subset Unique General Domain Different Domain Desired Domain Imp.

RA gt Inspection

tBiomed 7 1 0 7 0
tBiodiv 7 0 0 7 1
tFood 19 0 0 17 2

CTA gt Inspection

tBiomed 3 1 0 2 0
tBiodiv 3 0 1 2 0
tFood 8 3 0 5 0

To evaluate the quality of annotations, we counted the number of individual tables with wrong,461

abstract, or impossible annotated annotations in all STI tasks. To inspect the quality of the462

generated table structure, we also counted the number of individual tables that are duplicated or463

have duplicate columns, rows, or cells. In tBiomed and tFood subsets, we found a couple of tables464

listing a duplicate cell value (wd:Q16695773, ‘WikiProject’), which is considered too abstract.465

In tBiodiv subset, another table contains (wd:Q1239328, ‘national encyclopedia’) as a column466

type, CTA annotation, which is too abstract or not domain-relevant. Additionally, another table467

contains RA annotations for rows containing one cell value (short values, e.g., country names).468

Those should be removed from RA ground truth or converted to NIL. In tFood, RA annotations469

are also found for tables that contain only one column but with longer text, e.g., descriptions.470

We did not consider that as impossible to annotate as in tBiodiv since the text provides more471

context than short values. We extended the evaluation of the annotation quality by giving a472

closer look to RA and CTA ground truth data. We determined four more aspects: how many473

annotations belong to the general domain, a different domain, and the desired domain. In addition,474

we locate those that are impossible to be annotated by an STI system. Table 7 summarizes475

these findings for the three datasets. RA gt annotations for tBiomed and tBiomed have seven476

unique entities in total. In tBiomed, we found (wd:Q3, life) and treated as both domain-specific477

and general domain simultaneously. The rest are entities related to (wd:Q2996394, biological478

process) like (wd:Q11978 ,digestion). In tBiodiv, we found only one entity that is impossible479

to annotate since it does not have any label or description in Wikidata. The rest are entities480

related to (wd:Q16521, taxon) or (wd:Q7432, species). tFood has a total of 19 unique RA481

annotations; we found two impossible entities to annotate due to the lack of Wikidata labels.482

The rest are entities related to (wd:Q178, pasta), (wd:Q9266, salad), or (wd:Q746549, dish).483

CTA gt annotation for tBiomed and tBiodiv have three unique classes. The former has the484

WikiProject class, which we considered a general domain, and the latter contains a class related485

to Philosophy, which is a different domain from biodiversity. tFood has a total of 8 unique classes,486

three of which belong to the general domain like (wd:Q6256, country). The rest are subclasses487

of (wd:Q2095, food) or (wd:Q25403900, food ingredient).488

TGDK
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5.9 Realistic Tables Assessment489

In this section, we evaluate the generated tables with their annotation concerning being a realistic490

dataset that is possible to annotate. First, we define the metrics we use to define a realistic491

dataset.492

M1: The analysis of the generated tables with their TD gt data should reflect various domain493

concepts and not stick to the given ones.494

M2: The analysis of the individual rows and columns with their mappings (RA and CTA)495

should reflect the selected domain (probably with some classes from the general domain as496

well) or cannot be mapped at all (NILs).497

M3: The ratio between the number of annotations and NILs should have a good balance.498

M4: The analysis of the gt data for STI tasks should have NILs for records that are impossible499

to annotate.500

M5: The generated tables should have no or limited duplicated rows and columns.501

M6: The generated tables should have realistic noise. For example, column names should be502

anonymized or renamed with meaningful headers.503

Currently, we evaluate the generated benchmarks across these metrics. We could determine504

some of them based on the method we developed and others we assess using the manual inspection505

of the generated benchmark as we did in the Quality Inspection (Subsection 5.8).506

For M1, manual inspection of the generated benchmarks is needed. We provided these numbers507

for the generated snippets of the three domains. Table 6 showed that the generated datasets508

contain more topics than the initial input domain-related concepts. Despite KG2Tables parsing509

the input domain concepts hierarchically, this ensures that all topics and classes belong to the510

same parent concept, and manual inspection could help identify the relational mistakes among511

these concepts in the source KG itself. For instance, if we leverage DBpedia as a source KG, at512

the time of writing, it contains a triple dbr:Species rdf:type dbo:MilitaryUnit.513

For M2-M5, all of them need manual inspection as well. The Data Quality Inspection (see514

above) fulfills these metrics. For M2, Table 7) demonstrated the number of entities and classes515

that are related to the target domain versus the general or different domain. In the three domains,516

the desired target domain has the dominant mappings. For M3, M4, and M5, Table 6 showed517

that the generated benchmarks have a good balance between NILs and true annotations for all518

STI tasks. Where we detected duplicates only on the cell level. However, it is still a subject of519

enhancement, especially for those that are impossible to annotate records in both tBiodiv and520

tBiomed.521

For M6, we can judge this metric from the method level. We currently anonymize column522

headers for all generated tables, such as Col1, Col2, . . . etc. We also suggest using LLMs to523

rename these columns, providing more context to the table. Alternatively, we could abbreviate the524

original column headers, which provides limited context. For table cells, we do not introduce any525

artificial noise to the original cell content. This is unlike existing AG general domain benchmarks526

(SemTab’19-23 and 2T) that have excessive artificial noise in the table content, making the527

generated table more artificial than realistic. These metrics and their evaluation in our generated528

benchmark from the method level or based on the sample evaluation demonstrate that we created529

realistic benchmarks for the three domains of interest using KG2Tables.530

6 Discussion and Limitations531

In this section, we compare between KG2Tables and the existing generator, SemTab 2019. In532

addition, we demonstrate key characteristics and limitations of KG2Tables with a highlight of533

what challenges it solved and what it brought.534



N. Abdelmageed et al. 42:21

Table 8 Comparison between SemTab2019 & KG2Tables Generators

Category Aspect SemTab 2019 KG2Tables

General Aspects Input KG Dump+SPARQL SPARQL
Specificity General Domain-specific

Generalization Allowed Allowed
Scale Large Large

Table Types Horizontal ✓ ✓

Entity ✗ ✓

Internal Structure Flat ✓ ✓

Deep (tree) ✗ ✓

Table Refinement Anonymization ✓ ✓

Noise ✓ ✗

Supported STI Tasks CEA ✓ ✓

CTA ✓ ✓

CPA ✓ ✓

RA ✗ ✓

TD ✗ ✓

6.1 KG2Tables vs. SemTab 2019 Generator535

Table 8 demonstrates a summary of five categories of the comparison between KG2Tables to536

SemTab 2019 generator approach: General aspects, generated tables types, internal structure it537

uses, table refinement techniques, and supported STI tasks. At first, the SemTab 2019 approach538

requires an entire dump of a KG, which it analyzes during the profiling step; however, it can also539

work off of SPARQL as well. KG2Tables, it requires an input of a list of domain-related concepts540

and uses SPARQL queries only to interact with KG to retrieve scoped children via recursive calls as541

demonstrated in Section 4. Both SemTab 2019 and KG2Tables produced large-scale benchmarks,542

while the latter has the largest produced tBiodivL with around half a million tables. SemTab543

2019 adheres to no domain since it can process an entire KG dump; however, our approach is544

bounded by the scope of the provided domain concepts as in the input file. Both generators545

are subject to generalization and support various KGs via slight modifications. This is possible546

in SemTab 2019 by having a KG dump of own choice or by re-writing SPARQL queries. In547

KG2Tables, we need to change the configuration of the SPARQL query endpoint and re-write548

the SPARQL queries themselves as well. Regarding the generated table types, SemTab 2019549

generates only horizontal table types, but KG2Tables generates horizontal and entity table types.550

The internal data structure used by SemTab 2019 generator code is the direct classes with their551

properties only, i.e., ‘flat’ data structure compared to KG2Tables. In the case of KG2Tables, we552

process the entire data hierarchy using recursive calls as a ‘tree’. A flat structure is also covered553

by setting the depth level to one. Concerning table refinement, KG2Tables anonymizes table554

columns only. However, SemTab 2019 introduces artificial noise, i.e., spelling mistakes and column555

anonymization. Finally, SemTab 2019 supports the three basic STI tasks: CEA, CTA, and CPA556

only, but KG2Tables additionally supports RA, and TD.557

6.2 KG2Tables Aspects558

In this section, we discuss eleven aspects of KG2Tables with an illustration of its limitations, and559

we point out possible solutions for them.560
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Data Quality for Large Scale Benchmarks561

tFood brought interesting challenges due to its specificity as witnessed in the state of the art;562

however, the dataset might also contain errors. The root cause of them is its source KG (Wikidata563

currently). Wikidata could contain meaningless data (entities/properties) that are impossible to564

discover from a first shot running KG2Tables code (they need to be explicitly filtered from the565

KG or specially handled).566

We have done manual data quality checks on a smaller scale of tFood, which indeed turns into567

a bottleneck in those larger benchmarks. However, it opens a room to investigate methodologies568

for checking the data quality. For example, we can develop a statistical-based analysis of the569

retrieved information and give insight into whether it contains enough context for disambiguation570

and classification. Thus, it influences our filters on what to select and what to drop to generate571

a more realistic dataset. Some examples have already been discovered during development, and572

others need further iterations. For example, wd:Q76846839, excluding the label, there is only573

‘Italy’ represents the country of origin for this sandwich. Systems can not predict this specific574

sandwich with such limited context. Thus, during the development of KG2Tables, we iterated575

over filtering rules like this to be excluded from target tasks. The same applies to exclude entries576

with only IDs or images (URLs).577

Data quality is still an open gap; we opened that call in SemTab 2024, ‘isGold?’ track15 focuses578

on quality assessment for STI benchmarks. We invited systems from the community that were579

developed to derive some metrics to help judge the quality level for a given benchmark.580

Ambiguous Rows581

We have encountered some table examples containing identical rows, where each row is supposed582

to be mapped to a different entity. Although these cases may not look realistic, and some may be583

impossible to annotate, 1) The goal is to evaluate the annotation solutions and have real-world584

matching problems, so how the tables look to a human user may not be relevant. 2) real-world585

data sets also contain plenty of such “impossible” cases, so a realistic benchmark should also586

contain such cases. Nevertheless, we will extend the data generator with the option to drop587

impossible mappings and produce human-readable labels in the tables.588

Internal Data Structure589

We used the term tree to represent the retrieved instances and subclasses’ internal data structure590

or related concepts. Originally, such related concepts formulated graphs (as the nature of a KG591

allows). However, we removed duplicates between them so an instance/ a subclass is handled only592

once. Thus, the overall retrieved children shape a tree structure.593

Depth Level594

Depth levels hold two meanings: (1. the configured level where it sets a limit for the recursive595

method (base case). (2. effective level indicates the exact number of levels included in the596

benchmark. For example, in Figure 6, tFood and tFoodL have 2 and 8 as an effective level,597

respectively. The configured level, the max level that could be reached by the algorithm, is set598

to 10 in the code. Depth controls the volume of the generated tables and the granularity of the599

retrieved instances/subclasses, thus, the generated tables.600

15 https://sem-tab-challenge.github.io/2024/tracks/is-gold-track.html

https://sem-tab-challenge.github.io/2024/tracks/is-gold-track.html
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Domain Representation Impact601

Domain representation affects the resultant benchmark in two ways. On the one hand, if insufficient602

entities (graph nodes) describe such a domain, it will negatively impact the number of possible603

generated tables. On the other hand, even if many concepts belong to such a domain but have a604

limited number of properties, it would negatively affect the table disambiguation context that605

could be used to annotate its individual components. i.e., yields many ‘Impossible to Annotated’606

cases. This limitation faces all kinds of STI benchmarks generator code. In our case, domain607

concepts are an input to our approach. Usually, they are determined by domain experts or by a608

data-driven approach, not by random pick-ups. However, we encourage a kind of ‘Dry Run’ before609

KG2Tables usage with other domains. Dry Run could be seen as a pilot phase with, for example,610

a short list of domain concepts to facilitate benchmark investigation to ensure a high-quality level.611

Scalability Pitfall612

The scalability is bounded by the current resources/hardware, e.g., we did not manage to generate613

tBiomed using the full 10 levels due to memory issues and timeout from the SPARQL query live614

endpoint by Wikidata. A solution for this is a distributed system where individual machines solve615

smaller-scale tasks. In addition, the timeout could be avoided by substituting the live endpoint616

with a locally hosted one.617

Diverse vs. Fine-grained Domain-specific Benchmarks618

To capture a diverse set of related concepts for a specific domain, the initial Domain Concepts .csv619

(first item in Fig 3) should be carefully selected by domain experts or followed by a data-driven620

approach. However, the current method does not influence those concepts. Additionally, selecting621

the initial Domain Concepts controls the granularity of the generated benchmark. The biodiversity622

domain (too broad) could be split into subdomains (climate and soil). We can capture both at623

once or focus on a more fine-grained domain (e.g., soil).624

Code Design625

We selected our design to deliver a high level of reusable components. Currently, we have developed626

two three methodologies to create horizontal relational tables based on properties. It would be627

easier to change only the implementation of generate_tables procedure without affecting other628

parts of the code. The same applies to anonymize_tables, it would be straightforward to change629

the final format of the benchmark since it currently follows the format of SemTab benchmarks.630

Additionally, it allows for changing the KG itself as well. Concrete APIs that list properties (hold631

SPARQL queries) could easily be replaced. A monolithic script will do the same task, but less632

flexible and more error-prone. Separated micro-services (to some extent) are adopted as the most633

straightforward implementation for the open-closed principle by allowing for easy extension of634

functionality without modifying other existing code.635

Larger size benchmark, does it matter?636

The larger size of tables, in terms of rows and columns, is not the sole factor requiring STI systems637

to be efficient and potent. While an STI system may address only the first ten records of a table,638

this approach is often insufficient due to the inherent diversity of the data within the table. As639

demonstrated in the Data Quality Inspection and Realistic Table Assessment experiments (see640

Subsection 5.8 and Subsection 5.9), this diversity underscores the limitations of focusing solely on641
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the top rows. To effectively handle STI tasks, a system must analyze all individual components of642

the table, significantly increasing the complexity of the process.643

Wikidata as a Data Source & Specificity644

Wikidata at the first place is a general domain KG; it does not adhere to a specific domain, so645

selecting representative domain concepts could be challenging in general. In addition, each domain646

has its own domain-specific challenges that might not appear at the final generated benchmark.647

For example, the biodiversity-specific benchmark BiodivTab [12] lists at least five data issues648

that are not common in the general domain. Thus, we recommend using domain-specific KGs649

available and accessible via a SPARQL query endpoint. A final decision on what to use as a650

source KG is based on the actual use case and project needs. In this work, since we work with651

demonstrative domain examples, Wikidata is a sufficient and good enough data source to generate652

our benchmarks.653

Generalization of KG2Tables654

We explore the generalization of KG2Tables along three key dimensions: 1) Changing the Know-655

ledge Graph (KG) as a Source: The current implementation utilizes Wikidata; however, the656

KG2Tables methodology is based on SPARQL queries, allowing the endpoint to be substituted657

with an alternative KG, such as DBpedia. This approach is not inherently tied to Wikidata but658

relies on a series of generic queries executed against a KG using a seed signature. Furthermore, the659

modular code design facilitates seamless substitution of the KG. 2) Altering the Domain of Interest:660

In its general framework, KG2Tables accepts a customizable list of domain concepts. In this study,661

we defined these concepts using state-of-the-art resources or through a data-driven methodology.662

This process can be readily adapted, either by employing similar methods or by deferring the663

selection of domain concepts to domain experts. For instance, if the selected domain is "Aerospace"664

and Wikidata serves as the source KG, the following concepts could be used: (wd:Q11436,665

aircraft), (wd:Q1297322, satellite), and (wd:Q41291, rocket). Finally, 3) Modifying the666

Structure of the Generated Benchmark: Currently, the structure of generated benchmarks is667

controlled through a configuration file. Adjusting parameters such as MAX_DEPTH = 10 or668

MAX_NO_INSTANCES = 100 produces datasets with varying statistical properties. These669

three dimensions illustrate the flexibility of KG2Tables in generating diverse STI benchmarks,670

thereby enabling its application across a wide range of contexts.671

6.3 Create Your Benchmark - What Does it Cost?672

The out-of-the-box usage of KG2Tables is the fastest use, i.e., Wikidata is source KG. A list of673

domain-related concepts is the only required step. Ideas on how to select domain concepts include674

but are not limited to, a data-driven approach where a domain analysis is required on the KG675

itself, as we did in tFood construction. Another approach is reusing existing semantic classes or676

types for a particular domain. We adopted this approach to create tBiomed and tBiomed. Last677

but not least, ask domain experts to suggest domain-related concepts. KG2Tables has no limit678

on the number of domain-related concepts, but a non-exhaustive list is guaranteed to generate679

benchmarks successfully.680

A recommended step before generating a benchmark is a sanity quality inspection, i.e., a681

lightweight activity to gain an overview of the to-be-generated benchmark, which can be tested682

with one or two domain-related concepts. Mertices that are important to check are the quality of683

both annotations and generated tables. We demonstrate such activity in Section 5.8 with a list of684
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useful metrics to assess the data quality. This step can influence the filters applied to generate the685

final tables and yield high-quality benchmarks.686

A customized use is also supported beyond providing domain-related concepts to KG2Tables.687

We expose customized input to the generator via a configuration file16. For example, the value of688

the depth level and the maximum number of children per depth level are customizable. Changing689

these values allows exploring different data and nested concepts; if the maximum number of690

children is too large, KG2Tables might fail to generate the benchmark.691

More advanced use of KG2Tables leverages other KGs, e.g., DBpedia or domain-specific ones.692

In addition to providing the target SPARQL query endpoint in the configuration file, more693

modifications are required to the current code version. For example, re-writing SPARQL queries694

that retrieve instances, subclasses, and their properties. These queries are embedded in the code695

itself17.696

6.4 KG2Tables: Impact vs. Challenges697

Based on the comparison with SemTab 2019 approach and the explained aspects of KG2Tables, we698

summarize its impact and challenges. On the one hand, KG2Tables solved the problem of finding699

or crafting an STI benchmark to assess domain-specific STI system. This is brought handily700

and quickly by providing a list of concepts of a domain of interest. The target audience for this701

tool will be researchers who aim to build trusted domain-specific STI systems. Other audiences702

from the industry could also use it to validate their commercial tools. From our experience,703

STI systems evaluation using only general domain benchmarks is insufficient if such systems are704

supposed to be domain-specific; a critical domain example is the biomedical domain. The manual705

construction of these domain-specific benchmarks, usually small in scale, costs an average of a year706

of development, e.g., BiodivTab [11, 12]. KG2Tables generated realistic datasets as we defined707

in Subsection 5.9. For example, the constructed benchmarks add no artificial noise to the cell708

content. In addition, KG2Tables relies purely on SPARQL queries to construct STI benchmarks,709

making it easily adapted to any other KG. It can also generate various benchmarks with different710

parameters, such as the maximum depth at which the approach can go deep. On the other711

hand, the current version of KG2Tables brought new challenges to the STI benchmarks creation.712

Generally, the output benchmarks from the KG2Tables approach are silver-standard, which is less713

in quality than those manually created or gold-standard. For example, the ambiguous rows we714

detected in a later stage of KG2Tables development. This requires a sort of systematic approach715

to ensure high-quality data. We explained a sample-based method to ensure data quality in716

Subsection 5.8 with quality metrics in Table 6 and Table 7. In addition, KG2Tables is sensitive717

to the domain representation in the source KG. If the target domain has limited entities and718

classes, then the resultant benchmark will lack a dense representation of such a domain. Moreover,719

KG2Tables is bounded by the selected resources of the hardware and the timeout errors from the720

SPARQL endpoint. Such scalability issues we experienced in the construction of tBiodivL.721

7 Conclusion and Future Work722

In this paper, we introduced KG2Tables, a generator code that constructs domain-specific tabular723

data benchmarks for Semantic Table Interpretation (STI) tasks. It recursively leverages the724

internal hierarchy of the given related concepts in the target Knowledge Graph (KG) to construct725

16 https://github.com/fusion-jena/KG2Tables/blob/main/config.py
17 https://github.com/fusion-jena/KG2Tables/blob/main/inc/api_properties.py
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two types of tables: horizontal and entity tables. It also covers five STI tasks commonly used in726

the state of the art. We tested KG2Tables with three domains of interest: Food, Biodiversity, and727

Biomedical. We managed to construct two variations of each domain of interest by leveraging728

different depths of the internal hierarchy of each domain-related concept. Our experiments yielded729

six large-scale domain-specific benchmarks with over half a million tables. In addition, we gave730

insights about the generated benchmarks and showed the challenges that come up with them. We731

included a detailed evaluation of one of our benchmarks, tFood, using the state-of-the-art STI732

systems. We conducted a systematic data quality inspection experiment on three subsets of the733

constructed benchmarks, showing the current quality level and pointing out issues as well.734

Currently, we manually selected the related domain concepts from a target KG or by re-using735

existing semantic types provided in the state of the art. We plan to investigate the automatic736

discovery of the related concepts given only one category. We released our generated benchmarks737

in CSV format only; we plan to support the generation of RDF data to enable the evaluation of738

ontology matching tools from a different perspective. Since we perform a sample-based method739

for the quality inspection, we plan to explore the generalization, i.e., leveraging other KGs like740

DBpedia or other domain-specific ones. Last but not least, we aim to explore more systematic741

ways for data quality inspection on a larger scale of benchmarks, e.g., those with hundreds of742

thousands of tables.743
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