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— Abstract

Tabular data, often in the form of CSV files, plays
a pivotal role in data analytics pipelines. Under-
standing this data semantically, known as Semantic
Table Interpretation (STI), is crucial but poses chal-
lenges due to several factors such as the ambiguity
of labels. As a result, STI has gained increasing
attention from the community in the past few years.
Evaluating STI systems requires well-established
benchmarks. Most of the existing large-scale bench-
marks are derived from general domain sources and
focus on ambiguity, while domain-specific bench-
marks are relatively small in size. This paper in-
troduces KG2Tables, a framework that can con-
struct domain-specific large-scale benchmarks from
a Knowledge Graph (KG). KG2Tables leverages the
internal hierarchy of the relevant KG concepts and
their properties. As a proof of concept, we have

built large datasets in the food, biodiversity, and
biomedical domains. The resulting datasets, tFood,
tBiomed, and tBiodiv, have been made available for
the public in the ISWC SemTab challenge (2023 and
2024 editions). We include the evaluation results
of top-performing STI systems using tFood Such
results underscore its potential as a robust evalu-
ation benchmark for challenging STI systems. We
demonstrate the data quality level using a sample-
based approach for the generated benchmarks in-
cluding, for example, realistic tables assessment.
Nevertheless, we provide an extensive discussion of
KG2Tables explaining how it could be used to cre-
ate other benchmarks from any domain of interest
and including its key features and limitations with
suggestions to overcome them.
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1 Introduction

Semantic Table Interpretation (STT) has recently witnessed increasing attention from the com-
munity [41]. The goal of this process is to map individual table components, e.g., cells and columns,
or even the entire table, to entities and classes from a target Knowledge Graph (KG) such as
Wikidata [40], DBpedia [14], or Schema.org [24]. Such process is expressed in five STI-tasks:
Cell Entity Annotation (CEA), Column Type Annotation (CTA), Column Property Annota-
tion (CPA), Row Annotation (RA), and Topic Detection (TD). We give the details of each of
them in Section 2. Since 2019, the Semantic Web Challenge on Tabular Data to Knowledge
Graph Matching (SemTab)?, which is running for the sixth time this year, has aimed at setting
a common standard for evaluating STI systems [29, 30, 21, 1, 13]. It poses various challenges
and benchmarks® every year. Most of the datasets are Automatically Generated (AG) except
for the Tough Tables (2T) [20] and BiodivTab [11] datasets that have been manually curated.
Most of these benchmarks, including 2T, are derived from the general domain. BiodivTab is an
exception as it is a biodiversity-specific dataset. The SemTab results showed that this dataset was
much harder to tackle than the domain-independent ones for state-of-the-art systems participating
in the challenge [21]. We believe this is due to domain-specific challenges that general-purpose
systems are ill-equipped to handle or require extensive tuning or training data. In order to improve
performance on this vital group of datasets, we argue that a broader range of domain-specific
test data is urgently needed. Due to the high effort in creation (in particular, the need for
manual curation), BiodivTab is a relatively small dataset compared to others in the competition;
this might be a drawback influencing evaluation results. Therefore, there is a need for larger,
domain-specific datasets to be included within the community-driven evaluation campaigns. In
this paper, we propose a technique that enables the creation of large-scale and domain-specific
benchmarks without massive human intervention from a KG. We focus on three crucial domains:
food, biodiversity, and biomedicine.

An impressive number of STI systems have been developed over the past years to solve the
common challenges of STI tasks. To encourage these systems to tackle STT tasks in a specific
domain, we need to provide a systematic evaluation using well-established benchmarks following the
FAIR (findable, accessible, indescribable, and reusable) [43] principles. In particular, benchmarks
are needed that cover domains of high practical or scientific relevance. Thus, we introduce a
domain-agnostic approach that constructs domain-specific tabular data benchmarks for STT given
a KG. As a proof of concept, we introduce three novel tabular data benchmarks derived from
Wikidata to evaluate existing STI systems.

The main contributions of this paper, extending those of our previously published ISWC 2024
poster paper [2], are as follows:

KG2Tables, a detailed overview of a general framework to construct domain-specific STI

benchmarks. It leverages the internal hierarchy of related domain concepts from a KG.

Novel large-scale tabular data benchmarks for three domains supporting five STI-tasks.

2 https://www.cs.ox.ac.uk/isg/challenges/sem—tab/
3 We use benchmarks and datasets interchangeably in this paper.
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Country or _ | Average Internet connection speed | Smartphone usage - Charles Bridge
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(b) Longest span  13.4 metres (44 ft)l"]
a 79 5 Ne.ofspans 16
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Figure 1 Inner-relationship examples. (a) Relational?, (b) Matrix®, and (c) Entity®

Evaluation of the generated benchmarks and a comparison with the state of the art. One of
these datasets, tFood, was made available in the SemTab 2023 Challenge. The others, tBiodiv
and tBiomed, have been included in the 2024 edition.

tFood evaluation through the current top-performing STI-systems besides the SemTab 2023
participation.

Data quality inspection for three subsets of the generated benchmarks.

Extensive discussion of KG2Tables with respect to its limitations and potential future solutions.
In addition to a detailed guide on how to use KG2Tables to create other benchmarks.

The rest of this paper is organized as follows: We give the prior background of this work
by explaining table types and STI tasks in Section 2. We provide an overview of the existing
benchmarks and discuss their limitations in Section 3. We demonstrate our KG2Tables approach
in Section 4. We evaluate our generated benchmarks in Section 5. We demonstrate the limitations
of KG2Tables with an extensive discussion in Section 6 We conclude this work and present future
directions in Section 7.

2 Background

Tabular Data

A table could be just a layout or encapsulate a certain amount of information [42]. The former
is used for visualization (layout table). However, the latter expresses a topic or thing (genuine
table). Genuine tables can be categorized along two dimensions [38, 34]: (i) Inner-relationship
dimension: a table could be Relational (Figure 1(a)), Matrix (Figure 1(b)), or Entity (Figure 1(c)),
(ii) Orientation dimension: it considers the direction of relationships inside a table, it could be
horizontal, vertical, or matrix. Entities are described row-wise in horizontal tables (Figure 1(a)).
They are described by a column in vertical tables (Figure 1(c)). Matrix tables cannot be interpreted
row by row or column by column but rather cell by cell while simultaneously considering both
horizontal and vertical headers as given by Figure 1(b). For example, our dataset tFood contains
both Horizontal Relational Tables and Entity Tables.

42:3
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Column Type Topic
Annotation Country Area Capital Detection
(CTA) (TD)

Egypt 1,010,408 Cairo
Germany 357,386 Berlin
9,826,675 Washington, D.C.

Figure 2 A summary of Semantic Table Interpretation (STI) tasks.

Matching Tasks

State-of-the-art STT tasks propose ways to annotate tabular data semantically and, thus, facilitate
a potential transformation into a KG. Figure 2 gives an overview of the five most common STI
tasks. The tasks are described below (the examples assume Wikidata is the target KG):

1. Cell Entity Annotation (CEA) aims at linking a table cell value to a KG entity. In the case of
Figure 2, ‘Egypt’ would be linked to ‘wd:Q79’".

2. Column Type Annotation (CTA) maps the entire column to a semantic type. In the example
of Figure 2, it annotates the highlighted column to ‘wd:Q6256’ (country).

3. Column Property Annotation (CPA) links a column pair (subject-object) with a semantic
property from the target KG. In Figure 2, country and capital columns would be linked
through ‘wdt:P1376’ (capital) from the target KG.

4. Row Annotation (RA) maps the entire row to a KG entity. Its output is different from the
first task since the subject column may be absent as in the example of Figure 2. Row to
instance would be able to detect that the entire third row refers to ‘wd:Q30’ (United States of
America)®.

5. Topic Detection (TD) classifies the entire table to a topic. Such topic could be a KG class or
entity. ‘wd:Q6256’ (country) would be the solution for the table in Figure 2.

SemTab Challenge

The Semantic Web Challenge on Tabular Data to Knowledge Graph Matching (SemTab) defines
a standard framework to evaluate STI approaches. It has been held annually since 2019 and so
far co-occurred along with the International Semantic Web Conference (ISWC) and Ontology
Matching (OM) workshop. During the series of the challenge, various tasks of the STI are posed
to participants including CEA, CTA, and CPA tasks with various synthetic benchmarks from the
general domain [29, 30, 21, 1, 20, 27] and realistic domain-specific datasets [11, 12]. The SemTab
challenge had a large impact on the community since the highest number of STI systems have
been developed and took part in the challenge during its years [34].

3 Related Work

In the following, we give an overview of a common generator for STT benchmarks. In addition, we
discuss the current state-of-the-art and most widely used benchmarks for STI and their limitations.

https://en.wikipedia.org/wiki/Four_Asian_Tigers#Technology
https://en.wikipedia.org/wiki/Whistled_language#Lack_of_comprehension
https://en.wikipedia.org/wiki/Charles_Bridge

We use the following prefixes throughout this paper: wd: http://www.wikidata.org/entity/, wdt: http:
//www.wikidata.org/prop/direct/

RA is different in Entity Tables. It maps the row to a property instead of an instance.

i B> B

oo
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3.1 Existing Datasets Generators

SemTab 2019 [29] introduced a new collection of benchmarks created using an automated data
generator. The data generator takes a KG with a SPARQL endpoint as input and first performs
profiling to identify classes, properties, and their characteristics. It then uses the profiling output
to generate tables where: a) each table contains a set of entities of a particular class type (e.g.,
person), b) the first column in each table contains an identifier label (e.g., person name), c) other
columns in each table contain property values (e.g., age or place of birth), and d) errors and
variations are introduced in each cell value to make the annotation task more challenging. Each
generated table comes with ground truth annotations for CEA (mapping each label to the KG
entity), CTA (mapping each column to the associated class), and CPA (mapping the first column
and every other column to the property used to populate the column contents). The SemTab 2019
generator retrieves only direct properties for each class without considering the subclass hierarchy
in the KG. The primary mechanism for data generation in the generator is randomly selecting
property sets and running SPARQL queries to find those that produce complete tables with no
null values.

3.2 Existing Benchmarks

In the following, we discuss the most common benchmarks that are used for evaluating STI
systems with an overview of their limitations. We provide comparison tables for such benchmarks,
including our newly generated ones in Table 2 and Table 3 (see Section 5).

Limaye [33] is one of the earliest benchmarks developed for STI tasks. It aims to annotate
web tables using the YAGO KG. The dataset is divided into four subsets according to the data
source, the labeling method, and application scenarios. Three subsets are manually labeled, while
the fourth one is automatically generated. Altogether, it constructs the final benchmark with
428 annotated tables. Annotation errors were reported for the automatically labeled subset [35],
which were corrected by Bhagavatula et al. [17] in 2015. Later on, in 2017, Efthymiou et al. [23]
adapted the disambiguation links to the DBpedia KG.

T2Dv2 [32] is the recent edition of the T2D [39] gold standard where annotation errors are
fixed. Tt is widely used by STI systems like Limaye et al. [33] and others. Up to 2019, T2Dv2
along with Limaye were the main benchmarks used by STI systems. T2Dv2 covers the tasks of
row-to-instance (RA in our context), attribute-to-property (maps to our definition of CPA), and
table-to-class (TD following our definition), for 779 tables that are derived from WebTables [18]
where the target KG is DBpedia. In addition, T2Dv2 provides extensive metadata, such as the
context of the table and whether the table has a header.

ToughTables (2T) [20] is a set of 180 tables that are annotated from Wikidata and DBpedia.
The first use of 2T was during SemTab 2020 fourth round. It focuses on the ambiguity among
entity mentions in a way that makes it hard to disambiguate by a human expert. The authors did
not rely on the automatic generation of the dataset only but also provided manual curation of
such annotation to avoid false positives while evaluating a matching algorithm. It contains real
tables that reflect a knowledge gap between the target KG and an input table. Misspellings are
frequent and intense, which is useful for testing the weight of lexical features an algorithm could
use. In addition, a large number of rows is used to evaluate the system’s performance.

GitTables [27] is a subset of the original dataset [26] that was introduced in SemTab 2021.
It is a collection of 1,101 tables crawled from GitHub. They are annotated with DBpedia and
schema.org for the CTA task. GitTables poses a special case of CTA where the target annotation
match is not only a KG class but also a KG property. However, we analyzed the provided CTA
targets; we found GitTables has a sparse table structure leading to empty or almost empty columns,
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making the CTA task very challenging.

SemTab 2019-2020 [29, 30] are the first and second benchmarks that were introduced by
SemTab challenge in 2019 and 2020, respectively. Both are large-scale datasets automatically
generated (AG) from DBpedia and Wikidata, consisting of 15k and 131k tables, respectively.
The common data issues in both benchmarks are misspellings and ambiguity among table rows.
These benchmarks also focus on testing the ability of a system to scale.

HardTables 2021-2022 [21, 1] are the benchmarks that were introduced by SemTab’s third
and fourth editions in 2021 and 2022. They also focus on misspellings and ambiguities. Each
consists of 9k tables generated using an improved version of the data generator introduced in 2019
[29] that creates more realistic-looking tables. Tables that are correctly annotated by baseline
methods are removed to create a harder dataset.

WikidataTables [13] is the benchmark that was published during SemTab’s fifth edition
in 2023. This dataset is also generated by an improved version of the 2019 data generator and
consists of 10k tables. However, it is generated using a configuration that resulted in a large
number of very small tables with a high level of ambiguity for entity columns. This was done by
selecting labels that can refer to more than one entity in Wikidata.

BioTables [36] is a dataset that is used during SemTab 2021. It is derived from the biomedical
domain and consists of 110 tables. Its unique characteristic is that it contains columns with very
long descriptions from Wikidata.

BiodivTab [11, 12] is a biodiversity-specific benchmark manually annotated using Wikidata
and DBpedia concepts. It consists of 50 tables that are derived from real and augmented tables.
BiodivTab featured new challenges besides the common ambiguity issue and spelling mistakes,
like the nested entities in a single cell and the synecdoche; biodiversity scientists might use a city
name instead of a target river or an ecosystem name. For example, we found an occurrence for
Kentucky (city) to represent Kentucky River (river).

Limitations of Existing Benchmarks

By analyzing these benchmarks, we found that all of them except BioTables and BiodivTab are
derived from the general domain. This means that some very difficult challenges faced in certain
domains could be significantly underrepresented or even absent in such datasets. In addition, they
focus mainly on ambiguity and spelling mistakes. However, as highlighted in BiodivTab, real-world
datasets adopt a particular domain feature and distinctive challenges other than ambiguity. In
addition, all of them are synthetic and AG datasets with two exceptions, 2T and BiodivTab. Both
are relatively small as they consist of 180 and 50 tables, respectively.

4 KG2Tables Approach

KG2Tables accepts a list of related domain concepts in a CSV file. It parses these concepts to
construct a tree structure of these concepts. In Wikidata, domain concepts form a graph structure
since the KG allows that. However, KG2Tables process each relevant concept only once. Figure 3
demonstrates the recursive methodology of KG2Tables with a configured four levels of depth. We
construct the respective tree structure using the internal hierarchy of the input concepts. i.e., in
Wikidata, we have included all instances and subclasses via SPARQL queries.? We determined
both using via wdt:P31, instance of and wdt:P279, subclass of. We use the term ‘Children’

9 Section 5 provides concrete examples of how a non-exhaustive list of input concepts can be defined for a
specific domain.
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Domain Concepts

Depth Level =4

1
|—| Construct Tree Structure |
/ \\\
\
| Subclasses, ] | Instances, ] N
| Subcl " I ] | Instances, ]
| Subclasses; ]l Instances ] m
| Subclasses, ] | Instances ] m
| Instances |

Figure 3 Recursive Tree Generation. The color-coded boxes represent retrieved children for a given
level, e.g., Gray boxes represent first-level children.

to generalize related instances or subclasses. The tree structure is different in DBpedia, for
example, where, the internal hierarchy is determined via the predicate rdf:type only. We applied
a deduplication step since the overall instances and subclasses may overlap. Such overlap may
also occur across different levels of the tree.

Figure 4 extends Figure 3 with the logical steps to depict the approach we developed to
construct domain-specific benchmarks. In a given depth level of the tree structure, it retrieves
the current children of domain concepts and then follows with four steps: (1) Create Horizontal
Tables and (2) Create Raw Entity Tables: we constructed both types of tables based on the
properties of the current children; these tables contain the solutions of all STT tasks. (3) Refine
Tables: we revised the collected data and applied several steps to construct the final tables. (4)
Format Benchmark: we separated tables from solutions and targets to create a complete set of
STI tasks. In the following, we explain the individual steps.

4.1 Create Raw Horizontal Tables

We retrieved both instances and subclasses for each level using a recursive method for each concept.

For example, at the first level, for each concept in the input domain, we identified three folds:
direct instances, subclasses, and instances of subclasses. For each fold, we applied two kinds of
table generation methods to construct horizontal relational tables: a description-based method
and properties-based methods.

Descriptions-based Method

We have collected long descriptions for all children for each fold in the three data folds. Some
descriptions are unavailable in the KG, thus yielding an empty row in the final table. The following
Equation 1 describes this method. It creates a table with a single column where each row holds a
long description, Desc(c;), of the retrieved ¢; of the current concept in a data fold F'.

Trows = UglODesc(ci), ¢ eF (1)

Properties-based Methods

We retrieved all properties for each child, grouping them by data fold and excluding labels and
ID-related fields, e.g., Google ID. This set of properties is called excluded properties P,,.. This
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Figure 4 XKG2Tables Generator Approach

filtration ensures that the lexical table context is provided. We then manipulate the remaining
properties in three ways, leading to three table versions. We explain these methods in the
following, where a common filtration step for each property p; not in the excluded properties set
P.;.. Multi-valued properties are converted as comma-separated fields in the generated table file.
i.e., the property ‘wdt:P527 - has part(s)’ is usually given by multiple values.

We demonstrate examples entities, a set of current children (C;-Cs) of a recursive call are
connected with a set of properties (p1-ps) as indicated in Figure 5 (a). We keep this as a running
example for the following generation methods.

(i) Exclusive Selection: This version is created by column-wise stacking for all retrieved
properties, p; for each child ¢; in the data fold F'. This strategy creates a large table in terms of
size (rows and columns) but sparse in terms of cell content. The following Equation 2 describes
this method. It creates a table with the total number of children’s properties in a data fold F’
columns. Figure 5 (b) represents an output of this method. It keeps listing all properties without
considering any importance or frequency of such properties.

F|  |Pe;l
Trows = UL:‘Q Uj:o Pj,Ci € F,pj c Pc,”pj ¢ Peye (2)

(i) Random Selection: This version is created by randomly dropping properties from all the
created versions above using the exclusive selection. To ensure sufficient context in the resultant
table, we applied another filtering step to drop a table row if it has less than two properties.
Equation 3 explains this method, where it randomizes'®?, Rand dropping 50% of the full set of
properties, i.e., table columns. Figure 5 (c) represents an output of this method. It assumes that
the dropped column is the first column of p;. Note that the first row representing C; is also
removed since it would be empty given only the remaining properties ps and ps. Such an output

10 For reproducing the results of this method since it relies on the ‘random’ function, we set the seed to the
random module to 42.
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(b)

(d) (c)

Figure 5 A summary of the properties-based generation methods. (a) Example entities as a graph
(C1-C4). (b) 1-1 mapping of children entities set in a horizontal table (Exclusive Selection). (¢) Randomly
dropped column of a property (Random Selection). (d) Keep entities with the maximum number of
properties only (Common Selection).

is a reduced version in terms of table columns due to the randomized selection of these columns.
It might also reduce the number of table rows due to the filter function of dropping children with
less than two properties.

Trows = UG Rand(U7p;,0.5),p; € Pey,pj ¢ Pege,ci € F (3)

(iii) Common Selection: This version is created by grouping children in one data fold with the
maximum number of shared properties. Equation 4 describes this creation method, retrieving
the maximum, Maxz number of shared properties set, P for all children, ¢; in a data fold F'. The
resultant table from this method is relatively small in size but dense in cell content, i.e., the table
contains no empty cells. Figure 5 (d) represents an output of this method as the intersection of
all entities that share the maximum number of properties, three properties.

F [P |
Trows = Maz (N P.), Y05

Pj & Pege,ci € F (4)

The five STI tasks, introduced in Section 2, are supported in the horizontal relational tables.
Raw tables at this step include the solution of the supported tasks, except for CTA. We generated
these solutions separately in the final step. In raw tables, we did not include a subject column;
alternatively, we added a synthetic ID column. CPA targets ask for detecting properties that link
that (subject) column with other (object) columns. CEA targets require annotation for object
columns’ cells. We keep cell annotations for all entities as multi-valued.

4.2 Create Raw Entity Tables

The generation of this table type, entity table is more straightforward in development than in
horizontal relation tables. For each child in the retrieved children per concept, we have listed its
properties and have applied the general filtering function, i.e., excluding labels and IDs. Afterwards,
we have saved such a child to a CSV file with an entity orientation, where an entity table should
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have at least two properties. Additionally, we added a common description of the parent category
to all its belongings. The added long text provides an entity table with more lexical context.

The supported STT tasks for entity tables are (i) TD links the entire table to a KG entity. (%)
RA annotates a row to a single property. (%i) CEA maps a single cell that has a property value
to an instance.

4.3 Refine Tables

The objective of this task is to obtain the final output of the benchmark, and it contains two
steps. Raw table headers containing either the term ‘description’ or the original properties names.
Le., in properties-based generation methods, table columns represent children’s properties. We
have anonymized these values by changing them to coll, col2, etc. Another indirect manipulation
is renaming the header to another value. This technique requires manual effort. For example,
a column with header ‘country of origin’ would be renamed to ‘originated’. Another possibility
for header manipulation is to abbreviate it. For example, the same example is changed to ‘C.
of Origin’ or ‘CoQ’. For this task, we can also leverage a Large Language Model (LLM), e.g.,
GPT-4 [37] to suggest realistic abbreviated labels for a given column header.

4.4 Format Benchmark

During the raw table generation phase, we embedded the solution of STI tasks in the table itself
except for CTA. For example, the original table name is the solution of TD. In addition, we
created an extra column with the ground truth of the RA task. In this step, we create the final
format of the benchmark. We create final tables, their solutions ‘Ground truth data (gt)’, and
targets, i.e., indicate what to solve for each task. Targets are given to STI systems in case the
gt data is hidden. They are used to guide these systems on what to annotate without providing
the actual solutions or annotations to them. During the gt creation, we extracted solutions from
the raw tables and created separate files that list the gt data with an indication of the target
file, column, row, or cell. From this gt, we create the targets for the required tasks by dropping
its solution column. For the CTA task, we collected cells’ annotations for columns and queried
the KG for their semantic types. We collected all types with at least 50% support of the column
cells. To enable a partially correct solution for CTA, we queried the ancestors and descendants for
the collected types using the same technique introduced in SemTab 2020 [30]. For the CEA task,
since some cells are created using multiple properties, we kept a ground truth for each individual
if it exists.

5 Benchmark Generation using KG2Tables

In this section, we present, analyze, and evaluate benchmark data generated using KG2Tables.
We give an overview of the generated benchmarks with a detailed evaluation of the tFood dataset
using STT systems. We also provide information about the setup of KG2Tables and the challenges
we faced during the creation of the large-scale benchmarks, i.e., the need for tree pruning. Finally,
the release and availability of the generated artifacts are also provided.

5.1 Setup

We selected the Food, Biodiversity, and Biomedical domains as examples to generate domain-
specific STI benchmarks. However, KG2Tables is not limited to these domains since it accepts
any given domain concepts. We set the maximum levels of depth to 10 of the KG2Tables for the
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first two domains while we set it to 5 for the biomedical domain. These experiments yielded three
huge datasets: tFoodL, tBiodivL, and tBiomedL.

Concepts Determination

We needed to provide KG2Tables with domain concepts for each selected domain. For the
Food domain, in Wikidata, ‘food (wd:Q2095)’ had 949 instances and 2650 subclasses during the
construction of the first benchmark in March 2023. Thus, it is a rich source for creating tables
from it. To enable manual verification and revision and ensure quality, we limited the scope of
searching for domain-related concepts to those commonly found in a typical food menu. For
example, we search Wikidata for food, breakfast, lunch, dinner, drink, etc. At the end of this step,
we collected 64 food-related concepts.

For the other two domains, we leveraged only CTA annotations from existing benchmarks
as domain concepts. This ensures domain specificity as well. For the Biodiversity domain, we
obtained the unique semantic types from BiodivTab [11]. We omitted the general domain classes
from BiodivTab. For example, we removed ‘airline (wd:Q46970)’, and ‘airport (wd:Q1248784)’
to ensure domain specificity from the beginning. This resulted in 81 unique semantic types
used as categories. For the Biomedical domain, we retrieved the unique semantic types from
BioTables [36]. This list contains seven semantic types, including ‘protein (wd:Q8054)" and very
high-level concepts like ‘entity (wd:Q35120)".

Data Folds & Sampling

We applied validation/test splits where the validation set includes 10% of the total number of
tables. By this means, it allows training and testing for annotation systems and it becomes easier
to publish them online. For those too-large benchmarks, we applied a sampling strategy, i.e.,
create a 1% sample of each entity and horizontal tables to be published online.

5.2 Tree Pruning and Convergence

The target KG contains different tree sizes based on the selected domain concepts. For instance,
the biomedical domain contains general concepts, e.g., entity (wd:Q35120) contains millions of
instances. Thus, tree pruning is needed.

Figure 6 depicts the tree we leveraged to construct tFood. It also highlights the effective
depth that is included during the creation of the corresponding benchmark. tFood and tFoodL
are created with 2 and 8 levels of the tree, respectively. This also indicates that constructed
benchmarks contain all related data (instances and subclasses) by convergence before reaching the
maximum level of depth without any tree pruning applied.

Figure 7 and Figure 8 illustrate the tree to construct both tBiodiv and tBiomed. We
applied a tree-pruning technique for both benchmarks by setting the maximum number of
instances/subclasses to 100. tBiomed did not converge where the maximum depth is reached even
after applying tree pruning. This is due to the huge number of instances retrieved, e.g., ‘protein
(Q8054)’ contains 1,002,653 instances in Wikidata as of the time of writing in November 2023. So,
to construct a biomedical-specific benchmark, we set the maximum depth to 5 levels instead of 10
to yield into tBiomedL.

5.3 Benchmarks Overview

Table 1 summarizes the current state of the three experiments. tFoodL is 3x times larger than
tFood by leveraging more tree levels instead of two, as in tFood. tFoodL contains all the data
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Table 1 Summary of the generated benchmarks

Table Statistics Depth

Benchmark Entity Horizontal Total Config. Effective Pruning Published Disk Size

tFood 8,492 4,737 13,229 2 2 - val/test 71 MB
tFoodL 23,976 19,279 43,255 10 8 - val 144 MB
tBiodiv 15,391 42,035 57,426 2 2 100 val/test* 122 GB
tBiodivL 60,803 161,550 222,353 10 9 100 sample 312 GB
tBiomed 10,567 16,211 26,778 2 2 100 val/test™* 1GB
tBiomedL 310,951 549,528 860,479 5 5 100 sample 27 GB

of the internal hierarchy of eight levels without any tree pruning. The last two levels (9 and 10)
yielded no results We set the tree pruning threshold to 100 for both biodiversity and biomedical

benchmarks. This threshold will limit the maximum number of instances/subclasses to be retrieved.

The former, tBiodivL produced more than 220k tables leveraging nine levels of the tree, where
the last level produced no results. The latter, shown in tBiomed, failed to converge when we
set the maximum level to 10; thus, we reduced the maximum depth into five levels, yielding
more than 860k tables leveraging five levels of the tree. We constructed relatively smaller-sized
benchmarks for both domains using only two levels: tBiodiv and tBiomed. However, tBiodiv is
still large, 122 GB in size. Both dataset folds, validation and test, are available online, but the
test fold currently has no ground truth data. We plan to publish it as well by the end of 2024.
We published a sample online for those datasets that were too large (as a proof of concept). This
sample contains 1% of the resultant benchmark data.

Table 2 describes the existing benchmarks in terms of their domain, original data source, and
target KG. Our generated benchmarks are the only domain-specific datasets that are derived
from a given KG (Wikidata in this case). Table 3 shows the statistics of the state-of-the-art
benchmarks compared to the horizontal tables from our generated datasets. It shows their number
of tables, average rows, columns, and their coverage for STI tasks. From this table, our generated
benchmarks are the only benchmarks that cover all STI tasks. In addition, they are large-scale
domain-specific datasets compared to BioTables and BiodivTab. E.g., tBiomedL contains more
than 500k tables, to the best of our knowledge, this is the largest benchmark for STI tasks. This
enriches the community with large-scale benchmarks that cover the entire set of STI. In addition,
KG2Tables facilitates the construction of new domain-specific tabular data benchmarks since it is
independent of the domain of interest and easily adapted to different underlying KGs.

5.4 Generated Tables & Domain Specificity

In this section, we demonstrate randomly generated tables by KG2Tables in the three domains
we have experimented with to explore whether the generated tables adhere to a specific domain.
Figure 12 represents a randomly tFood generated table. It contains encoding issues, e.g., in row
42, that should be solved first before systems can annotate such a table. This table groups a
set of drinks (wd:Q40050). Figure 13 and Figure 14 depict random examples from tBiodiv, and
tBiomed datasets, respectively. Both tables are much smaller regarding row number compared
to the tFood example. The former represents a set of tidal rivers (wd:Q1074069). The latter
demonstrates a set of taxons (wd:Q16521). Given the solutions of TD task as shown above, the
three examples demonstrate domain specificity for each experimental domain.

42:13

TGDK



42:14 KG2Tables

Table 2 Generated benchmarks comparison with existing benchmarks in terms of data sources, domain,
and corresponding targets annotation for tFood and existing benchmarks. ST19 - ST20 (SemTab 2019-
2020). HT21 - HT23 (HardTables 2021-2022). WT23 (WikidataTables 2023).

Dataset Domain Data Source Target Annotation
ST19 General DBpedia DBpedia

ST20 General Wikidata Wikidata

HT21-22 General Wikidata Wikidata

WT23 General Wikidata Wikidata

2T General WebTables, DBpedia, Wikipedia Wikidata, DBpedia
BioTables Biology Gene Ontology, Uniprot Wikidata

GitTables General GitHub DBpedia, Schema.org
T2Dv2 General WebTables DBpedia

Limaye General Wikipedia DBpedia

BiodivTab Biodiversity BExIS, BEFChina, data.world Wikidata, DBpedia
tFood (L) Food Wikidata Wikidata
tBiodiv(L) Biodiversity Wikidata Wikidata

tBiomed (L) Biomedical Wikidata Wikidata

Table 3 Horizontal Tables Comparison with existing benchmarks in terms of tables statistics and
target annotations. ST19 - ST20 (SemTab 2019-2020). HT21 - HT23 (HardTables 2021-2022). WT23
(WikidataTables 2023). Git-ST21 is the published version of GitTables during SemTab 2021. * W, * D,
and *_Sch use Wikidata, DBpedia, and schema.org.

Table Statistics Target Annotations

Dataset ~KG Tables ‘v& Rows —Avg Cols  p, CTA CPA RA TD
(4 Std Dev.) (4 Std Dev.)

ST19 D 14,966 3656 5+3 986,370 22,176 17,070 NA NA
ST20 W 131,471 20+ 2188 4+1 2,930,722 93,483 236,003  NA NA
HT21 W 8957 1147 3+1 106,389 9,398 14,531 NA NA
HT22 W 8997  6+1 3+1 51,587 9,683 10,366 NA NA
WT23 W 9917 642 341 64,542 12,331 14,413 NA NA
2T W 180 1,080 £2,798 5+2 663,655 539 NA NA NA
2T D 180 1,080 +£2,798 4+2 636,185 535 NA NA NA
BioTabless W 110 2,448+193  6+1 1,301,324 656 546 NA NA
Git-ST21 D 1,001  58+95 16 + 12 NA 2,516 NA NA NA
Git-ST21  Sch 1,101  58+95 16 + 12 NA 720 NA NA NA
T2Dv2 D 779 85 + 270 543 NA NA 670 26,106 237
Limaye D 428 24+22 241 NA 84 NA NA NA
BiodivIab W 50 2594743 24413 33,405 614 NA NA NA
BiodivIab D 50 2594743 24413 33,405 569 NA NA NA
tFood W 4,388 23487 646 249,128 18,578 35,894 181,210 4,737
tFoodL W 19,279 16489 544 391,867 35,453 64,148 288,237 19,279
tBiodiv W 42,035 20423 13+15 4,975,112 188,008 467,979 817,230 42,035
tBiodivL W 161550 17422 1011 8,965,006 543,272 1,337,533 2,537,059 161,550
tBiomed W 16,211 17425 848 556,397 51,229 107,864 260,990 16211
tBiomedl W 549,528 17424 746 20,010,526 1,518,523 3,041,404 8,835,762 549,528
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5.5 tFood Detailed Evaluation

In the following, we give a statistical overview of the tFood benchmark and an evaluation of
well-known STT systems participating in the 2022 and 2023 editions of SemTab and beyond.

Insights

Figure 9 depicts the distribution of the horizontal relational tables per generation method.
Properties-based methods (shared properties and descriptions) yielded the most number of tables
due to their high number of combinations. Figure 10 represents the distribution of the top 10
concepts used to generate entity tables via instances and subclasses, respectively. The ‘dish’
category resulted in the highest number of tables in both cases. We calculated these numbers
after removing the duplicates; thus, we have unique tables. This figure proved the need to gather
tables from both instances and subclasses since they provided different sets of tables.

random_props+des
random_props
all_props+des
all_props

descriptions

478
shared_props+des
737

478

shared_props 510

737

o

100 200 300 400 500 600 700 800

W #Tables via direct (instances) M #Tables via indirect (instances of subs) M #Tables via direct (subclasses)

Figure 9 tFood: Generation Method vs. Number of tables.
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Figure 10 tFood: Entity Tables Top 10 Concepts Distribution.

42:15

TGDK



42:16

393

394
395

396

KG2Tables

tFood-CEA
1
0.9
0.8
BiodivTab-CTA 0.7 tFood-CTA
0.6
0.5
0.4

0.3

BiodivTab-CEA tFood-CPA

HardTables-CPA HardTables-CEA

HardTables-CTA
——JenTab —DAGOBAH s-elbat TSOTSA —Kepler-aSI

Figure 11 tFood (Horizontal) vs. BiodivTab (BDP) vs. HardTables 2022 F1-Scores on CEA, CTA,
and CPA Tasks

A B C D
1 |colD _lcoll col2 col3
2 |GMHRO India Khoday Group kind of liquid which is specifically prepared for human consumption
3 |GMHR1 Kentucky Sazerac Company ?
4 |GMHR2 Japan Takara Holdings ?
5 |GMHR3  Kentucky Sazerac Company kind of liquid which is specifically prepared for human consumption
6 |[GMHR4 Iceland William Grant & Sons kind of liquid which is specifically prepared for human consumption
7 |GMHR5  Vienna Mechitarists kind of liquid which is specifically prepared for human consumption
8 |[GMHR6 Iran Damavand Mineral Water ?
9 |GMHR?7  Finland Olvi ?
10 |GMHR8  England Silver Spring Soft Drinks kind of liquid which is specifically prepared for human consumption
11 |GMHR9  France Hood River Distillers ?
12 |GMHR10 Republic of Ireland Castle Brands kind of liquid which is specifically prepared for human consumption
13 |GMHR11 Republic of Ireland Irish Distillers kind of liquid which is specifically prepared for human consumption
Figure 12 tFood LHAK3D277.csv table - TD solution: (drink - wd:Q40050)
A B C D E F
1 col0 coll col2 col3 cold  cold
2 RBNEO North Carolina Albemarle Sound
3 RBNE1 Lafayette Parish, Vermilion Parish, St. Martin Parish  Gulf of Mexico 116
4 |RBNE2 Grays Harbor County Grays Harbor 16.4 1,19.7 Johns River Wildlife Area
5 RBNE3
6 RBNE4 Washington, Grays Harbor County Grays Harbor 11.5 1,4
7 RBNES Boston
8 RBNE6 Washington, Grays Harbor County Elk River 3.25 1,5.7 Elk River Natural Resources Conservation Area

Figure 13 tBiodiv IPS06100807I021.csv table - TD solution: (tidal river - wd:Q1074069)

Horizontal Tables Evaluation

To gain a first impression of the tFood benchmark, we contacted the main authors for s-elbat [19]
and DAGOBAH [28] to solve the three tasks of STI (CEA, CTA, and CPA) on the horizontal
tables of the tFood benchmark for comparison reasons. Additionally, we set up JenTab [10] since
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A B C D
1 |col0 coll col2 col3
group of one or more organism(s),
2 |UKIDO ungulate Felisleo  which a taxonomist adjudges to be a
3 |UKID1 omnivore Ardea grus ?

Figure 14 tBiomed TJY0607031051.csv table - TD solution: (taxon - wd:Q16521)

Table 4 tFood: Entity tables Scores comparison of annotation systems

System CEA (HardTables) CEA (tFood) TD (tFood)

TorchicTab 0.830 0.686 0.726
TSOTSA 0.627 0.237 0.156

the primary author of this paper is one of the main developers of that system. We included the
results of TSOTSA [31] and Kepler-aSI [15, 16] since they solve the three datasets. All these
systems are well-established for STI and top performers in the SemTab challenge. We compare
their scores with those published on HardTables and BiodivTab in 2022. Figure 11! shows the
systems’ scores using the three datasets. The highest scores by all systems come from HardTables,
which is an AG and derived from the general domain. BiodivTab, a biodiversity-specific dataset,
yields the second-highest scores by all systems. The lowest scores by all systems come from the
proposed tFood benchmark. This shows the novel challenges the tFood dataset brings to the
community on a very important domain where tool support is much needed.

Entity Tables Evaluation

We gained an insight into tFood entity tables as well through the achieved scores by SemTab
2023 participants: TorchicTab [22] and TSOTSA [31]. Table 4!2 demonstrates their Fl-scores on
the tFood entity tables test fold. Both systems achieved lower scores on tFood (CEA) compared
to their performance on the general domain HardTables dataset. TorchicTab and TSOTSA lost
14.4% and 39%, respectively, from their F1 scores compared to HardTables. Such results also
confirm the unique challenges of the tFood benchmark as in the horizontal tables evaluation above.

5.6 Release and Availability

Resources should be easily accessible to allow replication and reuse. We follow the FAIR guidelines
to publish our contributions [43]. We released KG2Tables [9]'® and datasets (tFood (L) [7, 8],
tBiodiv(L) [3, 4], tBiomed(L) [5, 6]) in such a way that researchers in the community can
benefit from them. To reach a broader audience the tFood benchmark was integrated within the
SemTab 2023 edition.'* We plan to include the other datasets within SemTab 2024. Our code
and datasets are released under MIT and Creative Commons Attribution 4.0 International (CC
BY 4.0), respectively.

1'We omit the BiodivTab-CPA from the figure since the dataset does not support it.
2TorchicTab results are calculated after the SemTab challenge and are not published in (22, 13]
3https://github.com/fusion- jena/KG2Tables
Yhttps://sem-tab-challenge.github.io/2023/
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Table 5 Summary of the generated subsets of the three benchmarks for quality inspection activity

Subset Selected Concept Val/Test

tBiomed wd:Q2996394, biological process 9/86

tBiodiv wd:Q7432, species 9/90
tFood wd: Q746549 dish 12/111

5.7 Maintenance and Update

We plan to maintain the published artifacts from this paper by uploading newer versions of the
dataset to the same Zenodo repositories. We expect changes for such datasets in case of bug
fixes, ground truth data modifications, targets, etc. Regarding the code, we plan to apply the
same methodology of monitoring updates; we will release new code versions and upload them to
Zenodo as well, while the most recent version of the code is found under our GitHub repository.
In addition, we will publish a ‘change log’ that describes the changes that have been applied to a
specific dataset or in the code.

Since KGs are dynamic and subject to frequent changes, we should point to a specific version
or a KG dump for benchmark reproducibility and allow a fair assessment to STI systems that
solve these benchmarks. Thus, we also upload specific dumps of KG, e.g., Wikidata, to Zenodo.
For example, the early Wikidata dump of March 2024 [25] could be used to either reproduce the
results of KG2Tables or to be used by STI systems to solve the generated benchmarks.

5.8 Data Quality Inspection

We relied on STT systems to directly solve our generated benchmarks, and we used their obtained
scores as a metric to evaluate such benchmarks. However, after these experimentations, either in
the early bird evaluation or in SemTab 2023 (see Section 5.5, we decided to investigate the quality
of the generated tables as well.)

Since the generated benchmarks could reach up to 500K tables, inspecting the individual tables
manually is impossible. Thus, to gain an overview of these benchmarks, we constructed smaller
subsets using the most frequent semantic class, e.g., top CTA annotation for each of them, and
re-ran the generator using a maximum depth level of two and maximum number of instances (tree
pruning) is five. These subsets are summarized in Table 5 demonstrating the selected concept and
validation test splits number of tables. We manually checked the validation split for each of these
benchmarks, which is, in total, 30 tables with their corresponding ground truth annotations.

In this quality inspection experiment, we aim to evaluate these subsets concerning three
dimensions of data quality: 1) Diversity of the generated data, e.g., does the generator manage to
capture other related domain concepts, or does it stick to the provided domain concepts? Another
aspect is comparing null annotations to the retrieved types, e.g., NILs. 2) Quality of annotations,
i.e., if a required annotation is impossible to solve, it is wrongly labeled in the ground truth or too
abstract and not that useful. Finally, 3) Quality of the table structure, e.g., if there are duplicate
tables, rows, or columns. Table 6 summarizes these findings by showing the number of tables per
subset that fulfills the abovementioned requirements.

To assess the generated topics’ diversity, we counted unique table types from the ground truth
data of the TD task. While NILs represent the count of the null annotations versus the actual
semantic types for CTA annotations. For this aspect, the generator found more related concepts
using only two levels for both tBiomed and tFood subsets. For tBiodiv, the generator needs
more levels to explore to include more diverse data. The NILs metric balances the number of null
annotations and actual semantic types for the tBiomed subset. This is much better in the other
two domains, where the dominant types are actual semantic classes.



461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

N. Abdelmageed et al.

Table 6 Summary of quality checks per subset

Diversity Annotations Structure

Subset Topics NILs Wrong Impossible Abstract Tables Columns Rows Cells

tBiomed 2 10/13 0 0 4 0 0 0 3
tBiodiv 1 0/5 0 1 1 0 0 0 4
tFood 3 2/19 0 1 3 0 0 0 5

Table 7 Summary of RA and CTA ground truth quality checks per subset

Subset Unique General Domain Different Domain Desired Domain Imp.

RA gt Inspection

tBiomed 7 1 0 7 0
tBiodiv 7 0 0 7 1
tFood 19 0 0 17 2

CTA gt Inspection

tBiomed 3 1 0 2 0
tBiodiv 3 0 1 2 0
tFood 8 3 0 5 0

To evaluate the quality of annotations, we counted the number of individual tables with wrong,
abstract, or impossible annotated annotations in all STI tasks. To inspect the quality of the
generated table structure, we also counted the number of individual tables that are duplicated or
have duplicate columns, rows, or cells. In tBiomed and tFood subsets, we found a couple of tables
listing a duplicate cell value (wd:Q16695773, ‘WikiProject’), which is considered too abstract.
In tBiodiv subset, another table contains (wd:Q1239328, ‘national encyclopedia’) as a column
type, CTA annotation, which is too abstract or not domain-relevant. Additionally, another table
contains RA annotations for rows containing one cell value (short values, e.g., country names).
Those should be removed from RA ground truth or converted to NIL. In tFood, RA annotations
are also found for tables that contain only one column but with longer text, e.g., descriptions.
We did not consider that as impossible to annotate as in tBiodiv since the text provides more
context than short values. We extended the evaluation of the annotation quality by giving a
closer look to RA and CTA ground truth data. We determined four more aspects: how many
annotations belong to the general domain, a different domain, and the desired domain. In addition,
we locate those that are impossible to be annotated by an STI system. Table 7 summarizes
these findings for the three datasets. RA gt annotations for tBiomed and tBiomed have seven
unique entities in total. In tBiomed, we found (wd:Q3, life) and treated as both domain-specific
and general domain simultaneously. The rest are entities related to (wd:Q2996394, biological
process) like (wd:Q11978 ,digestion). In tBiodiv, we found only one entity that is impossible
to annotate since it does not have any label or description in Wikidata. The rest are entities
related to (wd:Q16521, taxon) or (wd:Q7432, species). tFood has a total of 19 unique RA
annotations; we found two impossible entities to annotate due to the lack of Wikidata labels.
The rest are entities related to (wd:Q178, pasta), (wd:Q9266, salad), or (wd:Q746549, dish).
CTA gt annotation for tBiomed and tBiodiv have three unique classes. The former has the
WikiProject class, which we considered a general domain, and the latter contains a class related
to Philosophy, which is a different domain from biodiversity. tFood has a total of 8 unique classes,
three of which belong to the general domain like (wd:Q6256, country). The rest are subclasses
of (wd:Q2095, food) or (wd:Q25403900, food ingredient).
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5.9 Realistic Tables Assessment

In this section, we evaluate the generated tables with their annotation concerning being a realistic
dataset that is possible to annotate. First, we define the metrics we use to define a realistic
dataset.
M1: The analysis of the generated tables with their TD gt data should reflect various domain
concepts and not stick to the given ones.
M2: The analysis of the individual rows and columns with their mappings (RA and CTA)
should reflect the selected domain (probably with some classes from the general domain as
well) or cannot be mapped at all (NILs).
Ma3: The ratio between the number of annotations and NILs should have a good balance.
M4: The analysis of the gt data for STT tasks should have NILs for records that are impossible
to annotate.
M5: The generated tables should have no or limited duplicated rows and columns.
MG6: The generated tables should have realistic noise. For example, column names should be
anonymized or renamed with meaningful headers.

Currently, we evaluate the generated benchmarks across these metrics. We could determine
some of them based on the method we developed and others we assess using the manual inspection
of the generated benchmark as we did in the Quality Inspection (Subsection 5.8).

For M1, manual inspection of the generated benchmarks is needed. We provided these numbers
for the generated snippets of the three domains. Table 6 showed that the generated datasets
contain more topics than the initial input domain-related concepts. Despite KG2Tables parsing
the input domain concepts hierarchically, this ensures that all topics and classes belong to the
same parent concept, and manual inspection could help identify the relational mistakes among
these concepts in the source KG itself. For instance, if we leverage DBpedia as a source KG, at
the time of writing, it contains a triple dbr:Species rdf:type dbo:MilitaryUnit.

For M2-M5, all of them need manual inspection as well. The Data Quality Inspection (see
above) fulfills these metrics. For M2, Table 7) demonstrated the number of entities and classes
that are related to the target domain versus the general or different domain. In the three domains,
the desired target domain has the dominant mappings. For M3, M4, and M5, Table 6 showed
that the generated benchmarks have a good balance between NILs and true annotations for all
STI tasks. Where we detected duplicates only on the cell level. However, it is still a subject of
enhancement, especially for those that are impossible to annotate records in both tBiodiv and
tBiomed.

For M6, we can judge this metric from the method level. We currently anonymize column
headers for all generated tables, such as Coll, Col2, ... etc. We also suggest using LLMs to
rename these columns, providing more context to the table. Alternatively, we could abbreviate the
original column headers, which provides limited context. For table cells, we do not introduce any
artificial noise to the original cell content. This is unlike existing AG general domain benchmarks
(SemTab’19-23 and 2T) that have excessive artificial noise in the table content, making the
generated table more artificial than realistic. These metrics and their evaluation in our generated
benchmark from the method level or based on the sample evaluation demonstrate that we created
realistic benchmarks for the three domains of interest using KG2Tables.

6 Discussion and Limitations

In this section, we compare between KG2Tables and the existing generator, SemTab 2019. In
addition, we demonstrate key characteristics and limitations of KG2Tables with a highlight of
what challenges it solved and what it brought.
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Table 8 Comparison between SemTab2019 & KG2Tables Generators

Category Aspect SemTab 2019 KG2Tables

General Aspects Input KG Dump+SPARQL SPARQL
Specificity General Domain-specific
Generalization Allowed Allowed
Scale Large Large

AN
N

Table Types Horizontal
Entity

Internal Structure Flat
Deep (tree)

Table Refinement Anonymization
Noise

Supported STI Tasks CEA
CTA
CPA
RA
TD

X X NN NS N [ XN x
AN N NN RN N NN

6.1 KG2Tables vs. SemTab 2019 Generator

Table 8 demonstrates a summary of five categories of the comparison between KG2Tables to
SemTab 2019 generator approach: General aspects, generated tables types, internal structure it
uses, table refinement techniques, and supported STI tasks. At first, the SemTab 2019 approach
requires an entire dump of a KG, which it analyzes during the profiling step; however, it can also
work off of SPARQL as well. KG2Tables, it requires an input of a list of domain-related concepts
and uses SPARQL queries only to interact with KG to retrieve scoped children via recursive calls as
demonstrated in Section 4. Both SemTab 2019 and KG2Tables produced large-scale benchmarks,
while the latter has the largest produced tBiodivL with around half a million tables. SemTab
2019 adheres to no domain since it can process an entire KG dump; however, our approach is
bounded by the scope of the provided domain concepts as in the input file. Both generators
are subject to generalization and support various KGs via slight modifications. This is possible
in SemTab 2019 by having a KG dump of own choice or by re-writing SPARQL queries. In
KG2Tables, we need to change the configuration of the SPARQL query endpoint and re-write
the SPARQL queries themselves as well. Regarding the generated table types, SemTab 2019

generates only horizontal table types, but KG2Tables generates horizontal and entity table types.

The internal data structure used by SemTab 2019 generator code is the direct classes with their
properties only, i.e., ‘flat’ data structure compared to KG2Tables. In the case of KG2Tables, we
process the entire data hierarchy using recursive calls as a ‘tree’. A flat structure is also covered
by setting the depth level to one. Concerning table refinement, KG2Tables anonymizes table
columns only. However, SemTab 2019 introduces artificial noise, i.e., spelling mistakes and column
anonymization. Finally, SemTab 2019 supports the three basic STI tasks: CEA, CTA, and CPA
only, but KG2Tables additionally supports RA, and TD.

6.2 KG2Tables Aspects

In this section, we discuss eleven aspects of KG2Tables with an illustration of its limitations, and
we point out possible solutions for them.
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Data Quality for Large Scale Benchmarks

tFood brought interesting challenges due to its specificity as witnessed in the state of the art;
however, the dataset might also contain errors. The root cause of them is its source KG (Wikidata
currently). Wikidata could contain meaningless data (entities/properties) that are impossible to
discover from a first shot running KG2Tables code (they need to be explicitly filtered from the
KG or specially handled).

We have done manual data quality checks on a smaller scale of tFood, which indeed turns into
a bottleneck in those larger benchmarks. However, it opens a room to investigate methodologies
for checking the data quality. For example, we can develop a statistical-based analysis of the
retrieved information and give insight into whether it contains enough context for disambiguation
and classification. Thus, it influences our filters on what to select and what to drop to generate
a more realistic dataset. Some examples have already been discovered during development, and
others need further iterations. For example, wd:Q76846839, excluding the label, there is only
‘Italy’ represents the country of origin for this sandwich. Systems can not predict this specific
sandwich with such limited context. Thus, during the development of KG2Tables, we iterated
over filtering rules like this to be excluded from target tasks. The same applies to exclude entries
with only IDs or images (URLs).

Data quality is still an open gap; we opened that call in SemTab 2024, ‘isGold?’ track!® focuses
on quality assessment for STI benchmarks. We invited systems from the community that were
developed to derive some metrics to help judge the quality level for a given benchmark.

Ambiguous Rows

We have encountered some table examples containing identical rows, where each row is supposed
to be mapped to a different entity. Although these cases may not look realistic, and some may be
impossible to annotate, 1) The goal is to evaluate the annotation solutions and have real-world
matching problems, so how the tables look to a human user may not be relevant. 2) real-world
data sets also contain plenty of such “impossible” cases, so a realistic benchmark should also
contain such cases. Nevertheless, we will extend the data generator with the option to drop
impossible mappings and produce human-readable labels in the tables.

Internal Data Structure

We used the term tree to represent the retrieved instances and subclasses’ internal data structure
or related concepts. Originally, such related concepts formulated graphs (as the nature of a KG
allows). However, we removed duplicates between them so an instance/ a subclass is handled only
once. Thus, the overall retrieved children shape a tree structure.

Depth Level

Depth levels hold two meanings: (1. the configured level where it sets a limit for the recursive
method (base case). (2. effective level indicates the exact number of levels included in the
benchmark. For example, in Figure 6, tFood and tFoodL have 2 and 8 as an effective level,
respectively. The configured level, the max level that could be reached by the algorithm, is set
to 10 in the code. Depth controls the volume of the generated tables and the granularity of the
retrieved instances/subclasses, thus, the generated tables.

Y https://sem-tab-challenge.github.io/2024/tracks/is-gold-track.html
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Domain Representation Impact

Domain representation affects the resultant benchmark in two ways. On the one hand, if insufficient
entities (graph nodes) describe such a domain, it will negatively impact the number of possible
generated tables. On the other hand, even if many concepts belong to such a domain but have a
limited number of properties, it would negatively affect the table disambiguation context that
could be used to annotate its individual components. i.e., yields many ‘Impossible to Annotated’
cases. This limitation faces all kinds of STI benchmarks generator code. In our case, domain
concepts are an input to our approach. Usually, they are determined by domain experts or by a
data-driven approach, not by random pick-ups. However, we encourage a kind of ‘Dry Run’ before
KG2Tables usage with other domains. Dry Run could be seen as a pilot phase with, for example,
a short list of domain concepts to facilitate benchmark investigation to ensure a high-quality level.

Scalability Pitfall

The scalability is bounded by the current resources/hardware, e.g., we did not manage to generate
tBiomed using the full 10 levels due to memory issues and timeout from the SPARQL query live
endpoint by Wikidata. A solution for this is a distributed system where individual machines solve
smaller-scale tasks. In addition, the timeout could be avoided by substituting the live endpoint
with a locally hosted one.

Diverse vs. Fine-grained Domain-specific Benchmarks

To capture a diverse set of related concepts for a specific domain, the initial Domain Concepts .csv
(first item in Fig 3) should be carefully selected by domain experts or followed by a data-driven
approach. However, the current method does not influence those concepts. Additionally, selecting
the initial Domain Concepts controls the granularity of the generated benchmark. The biodiversity
domain (too broad) could be split into subdomains (climate and soil). We can capture both at
once or focus on a more fine-grained domain (e.g., soil).

Code Design

We selected our design to deliver a high level of reusable components. Currently, we have developed
two three methodologies to create horizontal relational tables based on properties. It would be
easier to change only the implementation of generate_tables procedure without affecting other
parts of the code. The same applies to anonymize_tables, it would be straightforward to change
the final format of the benchmark since it currently follows the format of SemTab benchmarks.
Additionally, it allows for changing the KG itself as well. Concrete APIs that list properties (hold
SPARQL queries) could easily be replaced. A monolithic script will do the same task, but less
flexible and more error-prone. Separated micro-services (to some extent) are adopted as the most
straightforward implementation for the open-closed principle by allowing for easy extension of
functionality without modifying other existing code.

Larger size benchmark, does it matter?

The larger size of tables, in terms of rows and columns, is not the sole factor requiring STT systems
to be efficient and potent. While an STI system may address only the first ten records of a table,
this approach is often insufficient due to the inherent diversity of the data within the table. As
demonstrated in the Data Quality Inspection and Realistic Table Assessment experiments (see
Subsection 5.8 and Subsection 5.9), this diversity underscores the limitations of focusing solely on
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the top rows. To effectively handle STT tasks, a system must analyze all individual components of
the table, significantly increasing the complexity of the process.

Wikidata as a Data Source & Specificity

Wikidata at the first place is a general domain KG; it does not adhere to a specific domain, so
selecting representative domain concepts could be challenging in general. In addition, each domain
has its own domain-specific challenges that might not appear at the final generated benchmark.
For example, the biodiversity-specific benchmark BiodivTab [12] lists at least five data issues
that are not common in the general domain. Thus, we recommend using domain-specific KGs
available and accessible via a SPARQL query endpoint. A final decision on what to use as a
source KG is based on the actual use case and project needs. In this work, since we work with
demonstrative domain examples, Wikidata is a sufficient and good enough data source to generate
our benchmarks.

Generalization of KG2Tables

We explore the generalization of KG2Tables along three key dimensions: 1) Changing the Know-
ledge Graph (KG) as a Source: The current implementation utilizes Wikidata; however, the
KG2Tables methodology is based on SPARQL queries, allowing the endpoint to be substituted
with an alternative KG, such as DBpedia. This approach is not inherently tied to Wikidata but
relies on a series of generic queries executed against a KG using a seed signature. Furthermore, the
modular code design facilitates seamless substitution of the KG. 2) Altering the Domain of Interest:
In its general framework, KG2Tables accepts a customizable list of domain concepts. In this study,
we defined these concepts using state-of-the-art resources or through a data-driven methodology.
This process can be readily adapted, either by employing similar methods or by deferring the
selection of domain concepts to domain experts. For instance, if the selected domain is "Aerospace”
and Wikidata serves as the source KG, the following concepts could be used: (wd:Q11436,
aircraft), (wd:Q1297322, satellite), and (wd:Q41291, rocket). Finally, 3) Modifying the
Structure of the Generated Benchmark: Currently, the structure of generated benchmarks is
controlled through a configuration file. Adjusting parameters such as MAX_DFEPTH = 10 or
MAX_NO_INSTANCES = 100 produces datasets with varying statistical properties. These
three dimensions illustrate the flexibility of KG2Tables in generating diverse STI benchmarks,
thereby enabling its application across a wide range of contexts.

6.3 Create Your Benchmark - What Does it Cost?

The out-of-the-box usage of KG2Tables is the fastest use, i.e., Wikidata is source KG. A list of
domain-related concepts is the only required step. Ideas on how to select domain concepts include
but are not limited to, a data-driven approach where a domain analysis is required on the KG
itself, as we did in tFood construction. Another approach is reusing existing semantic classes or
types for a particular domain. We adopted this approach to create tBiomed and tBiomed. Last
but not least, ask domain experts to suggest domain-related concepts. KG2Tables has no limit
on the number of domain-related concepts, but a non-exhaustive list is guaranteed to generate
benchmarks successfully.

A recommended step before generating a benchmark is a sanity quality inspection, i.e., a
lightweight activity to gain an overview of the to-be-generated benchmark, which can be tested
with one or two domain-related concepts. Mertices that are important to check are the quality of
both annotations and generated tables. We demonstrate such activity in Section 5.8 with a list of
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useful metrics to assess the data quality. This step can influence the filters applied to generate the
final tables and yield high-quality benchmarks.

A customized use is also supported beyond providing domain-related concepts to KG2Tables.
We expose customized input to the generator via a configuration file'®. For example, the value of
the depth level and the maximum number of children per depth level are customizable. Changing
these values allows exploring different data and nested concepts; if the maximum number of
children is too large, KG2Tables might fail to generate the benchmark.

More advanced use of KG2Tables leverages other KGs, e.g., DBpedia or domain-specific ones.
In addition to providing the target SPARQL query endpoint in the configuration file, more
modifications are required to the current code version. For example, re-writing SPARQL queries
that retrieve instances, subclasses, and their properties. These queries are embedded in the code
itself!”.

6.4 KG2Tables: Impact vs. Challenges

Based on the comparison with SemTab 2019 approach and the explained aspects of KG2Tables, we
summarize its impact and challenges.  On the one hand, KG2Tables solved the problem of finding
or crafting an STI benchmark to assess domain-specific STI system. This is brought handily
and quickly by providing a list of concepts of a domain of interest. The target audience for this
tool will be researchers who aim to build trusted domain-specific STT systems. Other audiences
from the industry could also use it to validate their commercial tools. From our experience,
STT systems evaluation using only general domain benchmarks is insufficient if such systems are
supposed to be domain-specific; a critical domain example is the biomedical domain. The manual
construction of these domain-specific benchmarks, usually small in scale, costs an average of a year
of development, e.g., BiodivTab [11, 12]. KG2Tables generated realistic datasets as we defined
in Subsection 5.9. For example, the constructed benchmarks add no artificial noise to the cell
content. In addition, KG2Tables relies purely on SPARQL queries to construct STT benchmarks,
making it easily adapted to any other KG. It can also generate various benchmarks with different
parameters, such as the maximum depth at which the approach can go deep.  On the other
hand, the current version of KG2Tables brought new challenges to the STT benchmarks creation.
Generally, the output benchmarks from the KG2Tables approach are silver-standard, which is less
in quality than those manually created or gold-standard. For example, the ambiguous rows we
detected in a later stage of KG2Tables development. This requires a sort of systematic approach
to ensure high-quality data. We explained a sample-based method to ensure data quality in
Subsection 5.8 with quality metrics in Table 6 and Table 7.  In addition, KG2Tables is sensitive
to the domain representation in the source KG. If the target domain has limited entities and
classes, then the resultant benchmark will lack a dense representation of such a domain. Moreover,
KG2Tables is bounded by the selected resources of the hardware and the timeout errors from the
SPARQL endpoint. Such scalability issues we experienced in the construction of tBiodivL.

7 Conclusion and Future Work

In this paper, we introduced KG2Tables, a generator code that constructs domain-specific tabular
data benchmarks for Semantic Table Interpretation (STI) tasks. It recursively leverages the
internal hierarchy of the given related concepts in the target Knowledge Graph (KG) to construct

S https://github. com/fusion- jena/KG2Tables/blob/main/config.py
7 https://github.com/fusion-jena/KG2Tables/blob/main/inc/api_properties.py
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two types of tables: horizontal and entity tables. It also covers five STI tasks commonly used in
the state of the art. We tested KG2Tables with three domains of interest: Food, Biodiversity, and
Biomedical. We managed to construct two variations of each domain of interest by leveraging
different depths of the internal hierarchy of each domain-related concept. Our experiments yielded
six large-scale domain-specific benchmarks with over half a million tables. In addition, we gave
insights about the generated benchmarks and showed the challenges that come up with them. We
included a detailed evaluation of one of our benchmarks, tFood, using the state-of-the-art STI
systems. We conducted a systematic data quality inspection experiment on three subsets of the
constructed benchmarks, showing the current quality level and pointing out issues as well.

Currently, we manually selected the related domain concepts from a target KG or by re-using
existing semantic types provided in the state of the art. We plan to investigate the automatic
discovery of the related concepts given only one category. We released our generated benchmarks
in CSV format only; we plan to support the generation of RDF data to enable the evaluation of
ontology matching tools from a different perspective. Since we perform a sample-based method
for the quality inspection, we plan to explore the generalization, i.e., leveraging other KGs like
DBpedia or other domain-specific ones. Last but not least, we aim to explore more systematic
ways for data quality inspection on a larger scale of benchmarks, e.g., those with hundreds of
thousands of tables.
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