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Abstract

Representing knowledge with ontologies and performing reasoning with semantic
reasoners is important in many intelligent applications. However, existing reasoners do
not take into account the available resources of the device where they run, which can be
important in many scenarios such as reasoning with very large ontologies or reasoning
on resource-constrained mobile devices.

In this paper, we propose a novel approach to adapt the size of knowledge managed
by applications, taking into account several criteria about resources available (such as
time, memory, and battery consumption), at the same time. Thus, rather than giving no
answer due to the lack of resources needed to deal with a full ontology, we propose a
novel architecture to compute a subontology to provide an incomplete answer at least.
Our approach makes use of existing approaches to predict the performance of semantic
reasoners and to compute ontology modularisation and ontology partition, but taking
into account the associated resource consumption. We also propose a novel measure
to estimate the semantic loss when replacing the original ontology by a subontology.
Finally, we present an implementation and evaluation of the whole pipeline, showing

that the semantic loss incurred in the process is acceptable.
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1. Introduction

One of the key reasons behind the success of intelligent applications is the ex-
ploitation of knowledge. From old knowledge-based systems or expert systems, it
has been clear that knowledge representation is a crucial task. Modern intelligent ap-
plications usually represent the relevant explicit knowledge using ontologies (see for
example (Allemang et al., 2020)), which are formal and shared specifications of the vo-
cabulary of a domain of interest. Ontologies are usually formalised using Description
Logics (DLs) (Baader et al., 2003), which have many advantages, including the possi-
bility of using semantic reasoners (Khamparia and Pandey, 2017) to answer questions
regarding an ontology, compute new knowledge which is not implicitly represented
in the ontology, etc. Ontology reasoners solve one or several reasoning tasks. Popu-
lar reasoning tasks include consistency checking (verifying that an ontology does not
have logical contradictions), instance retrieval (computing all the instances of a given
concept), classification (computing a concept hierarchy and a property hierarchy based
on the subsumption relationships), and ontology materialisation (precomputing some
inferences, such as indirect subclass axioms).

Unfortunately, the algorithms currently implemented by the semantic reasoners do
not take into account the resources available for the running environment. Let us dis-

cuss some examples where resources are important:

e Reasoners do not take into account the memory of computers where they are
executed: if the input ontology is very large, the reasoner might abort its execu-
tion returning an “out of memory error’” and therefore the user would not receive
any answer. For example, let us consider GALEN medical ontology, which has
been used as a reference terminology for surgical procedures in France, for oral
hygienists and dietitians in the Netherlands, and for drugs in the UK (Rogers
et al., 2001). When trying to reason with the 20.1 MB GALEN on a desktop
computer with an Intel Core i7-6700K@4.00 GHz CPU and 24GB of RAM,
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HermiT (Glimm et al., 2014) reasoner did not finish in 400 s and, after extending
the timeout to 3600 s, it ran out of memory. Indeed, in order to support GALEN,
people had to manually identify, extract, and use fragments of the ontology. Over
the years, different authors identified different fragments of the ontology, with
different expressivities and sizes, suitable for their particular hardware resources
and information needs. Ideally, such a process should be automatised and gener-

alised so that it can adapt to the user device resources.

MMD ontology, used at Aibel company (Norway), is another example where
modularisation is critical to perform efficient reasoning (Skj@veland et al., 2012).
In fact, requirements and specifications are represented using generic ontologies,
ontologies describing generic concepts in the engineering domain, and domain
ontologies. However, existing modules cannot be dynamically adapted to the

user device resources.

In ontology visualisation (which requires using a reasoner to deal with the im-
plicit knowledge) (Dudas et al., 2018), the ontology could be too large to be
displayed completely, so it is a good idea to take hardware resources and user
preferences into account. On the one hand, ontology visualisation tools should
adapt to the running environment, taking into account, for example, the size of
the screen. On the other hand, even if the ontology has a large number of nodes,
it is not necessary to display all of them (no user will be able to see the details of
thousands of nodes at the same time) but rather limit itself to showing a subset
of nodes that are interesting for the user or the most relevant concepts to get a

global view.

Mobile devices typically have limited resources (at least when compared to desk-
top/server counterparts) in terms of CPU processing, available memory, remain-
ing battery charge, and connectivity (wireless communications are, in general,
less reliable than wired ones). This also applies to the Internet of Things (IoT),
where the devices deployed to perform so called edge-computing would be also
limited by their hardware resources. For example, let us consider an emergency-

assistance app for mobile devices, such as the one implemented in the SHER-
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LOCK system (Yus and Mena, 2015). In order to assist the health staff to find
a proper treatment for a particular patient, it should be able to avoid medication
errors by automatically checking that there is no incompatibility between the
medicines and the allergies of the patient (according to the knowledge in a cer-
tain ontology). Being able to reason locally on such devices is important when
connectivity is not guaranteed (Huitzil et al., 2020). This is the case not only for
smartphones, but also tablets, laptops, wearable devices, etc. However, due to
its limited resources, significantly fewer reasoning tasks are completed on a mo-
bile device than on a desktop computer, as illustrated in the example in Figure 1,
adapted from (Bobed et al., 2015), where in 61 out of the 572 evaluated tasks,
the reasoning did not end successfully on the mobile device. Another example is
the beer recommender system GimmeHop, that required to compute manually a

fragment of the ontology to reason on a local mobile device (Huitzil et al., 2020).

OWL 2 DL Ontology classification

o A A AN
O N B O O©®O N DM O ®O

Difference in completed reasoning tasks

s M L S M L S M L S M L
HermiT JFact Pellet TrOWL

Figure 1: Difference in the number of tasks that finished on a desktop computer but did not finish on an
Android device, for different reasoners and ontology sizes: S(mall, <500 axiomas), M(edium, [500,5000)

axiomas) and L(arge, >5000 axioms).

We claim that an intelligent application cannot really be called “intelligent” if it

does not work when available resources are not optimal. For example, coming back to
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our emergency-assistance app, it should not assume that a stable wireless connection
will always exist in a remote mountainous area or inside a tunnel: in such critical
cases, the application should implement strategies to guarantee that there will be an
acceptable behaviour, such as working with the local knowledge, finding alternative
ways to communicate (e.g., an ad-hoc network), etc.

Current ontology tools, such as semantic reasoners (e.g., Pellet (Sirin et al., 2007),
HermiT (Glimm et al., 2014), TWOWL (Thomas et al., 2010), or MORe (Armas-
Romero et al., 2012)) or ontology editors (e.g., Protégé (Musen, 2015)) start to solve a
reasoning task without taking into account whether they will finish such a task or not.
If reasoning cannot be finished under the existing resources, current tools just abort
their execution and throw an exception (typically, “out of memory” error).

A first solution would be to adapt existing reasoning algorithms to different re-
source limitations, but this is complex as resource management is heterogeneous and
can be contradictory; e.g., to minimise reasoning time, semantic reasoners typically
use auxiliary data structures, which increases the memory use.

In this paper, instead, we propose a novel approach to promote resource-aware se-
mantic reasoning, deciding at run-time how much knowledge can be processed by the
device. As a consequence, it will improve the semantic capabilities of resource-limited
devices. In particular, we will mainly focus on adapting the available knowledge to
a size that a device is able to handle, to avoid aborting reasoning tasks due to a lack
of resources. Ideally, one would like to take into account all the available knowledge,
but limited capabilities might force us to restrict to a (as large as possible) subset. Fur-
thermore, our approach will make it possible for applications to detail the percentage of
knowledge that is being handled and to explain to the user that the answer of the reason-
ing is incomplete and its estimated loss of information. To do so, we propose (i) to first
estimate the needed resources for a given reasoning task on a given ontology, building
on previous approaches to predict the resource consumption of DL reasoners (Guclu
et al., 2016b; Kang et al., 2012; Pan et al., 2018), (ii) if needed, considering to the
specified limitations for the device, to compute a subset of knowledge to work with,

and (iii) to run a semantic reasoner to solve the given reasoning task on the (computed
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sub)set of knowledge'.

This context leads to two important research questions:

1. On the one hand, which size of knowledge are we able to manage in a given

device? As the resources of the devices are fixed, we turned our attention to the

knowledge to be processed, which can be selected somehow.

. On the other hand, even if we had a general framework to predict the cost in

terms of different criteria, how do we measure the consequences of dealing with
a subset of available knowledge only? In particular, given an ontology and an
extracted subontology, is it possible to measure, for a given reasoning task, the
semantic loss we will incur when working only with the latter one? As we will

discuss in Section 2.3, existing approaches are not directly applicable.

The main contributions of this paper are the following ones:

We firstly propose a general architecture based on a combination of ontology
modularisation strategies (Del Vescovo et al., 2013) and prediction of the cost of

a given reasoning task.

Then, for the sake of concrete illustration, we implement a prototype which fo-
cuses on a single resource: it adapts the reasoning to the specified maximum
running time, using a particular choice of prediction and modularisation tech-

niques.

We propose and evaluate a measure to estimate the semantic loss incurred, given
that our proposal advocate working with subontologies instead of full (but un-

manageable) ontologies.

We empirically demonstrate the feasibility of our approach by studying the ac-
curacy of the prediction when computing the adapted subontologies and the es-

timated semantic loss.

'In Latin, “Praedixi, Redegi, Cogitavi” means “I predicted, I reduced, I reasoned.”
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The rest of the paper is organised as follows. First, in Section 2 we present an
overview of the related work. Section 3 describes the proposed architecture, and its
possible use in a mobile computing scenario. Section 4 presents some possible knowl-
edge extraction strategies, implemented in a prototype. Then, Section 5 presents our
proposal to measure the semantic loss of a module. In Section 6, we perform an exper-
imental evaluation of our prototype. Finally, we draw some conclusions and present

the future work in Section 7.

2. Related Work

In this section we will overview some related work on computing ontology subsets
(Section 2.1), adapting ontology reasoning to the resources (Section 2.2), and measur-

ing semantic loss (Section 2.3). Finally, we identify some open issues (Section 2.4).

2.1. Computing ontology subsets

Several years ago Stuckenschmidt and Klein asserted that the realisation of the Se-
mantic Web depended on the ability to reuse ontologies (Stuckenschmidt and Klein,
2004). They proposed that problems arising from the monolithic nature and size of
ontologies could be solved by an automatic partitioning mechanism. Ontology par-
titioning consists of dividing an ontology into several subontologies such that every
axiom of the original ontology belongs to exactly one subontology. However, auto-
matic partitioning strategies so far do not take into account either the target environ-
ment where the extracted knowledge is going to be deployed or the actual tasks such
knowledge is going to be used for. For example, when dealing with SNOMED CT on-
tology (BioPortal , 2023), automatic partitioning strategies, such as SWOOP (Cuenca
Grau et al., 2006), or PATO (Schlicht and Stuckenschmidt, 2006), either produced one
very big subontology (due to the inner links between concepts), or one subontology
which takes into account parameters that were hardly related to the available resources
of our devices, such as number of partitions. Other approaches, such as Prompt (Noy
and Musen, 2004), rely on manual partitioning strategies which require some parame-
ters (again not related to resource consumption) set by the user/developer such as depth

of traversal, relationships to be included, and a starter concept.
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Apart from ontology partitioning, ontology modularisation consists of computing
a subset of an original ontology such that the inferences related to some terms (a seed
signature) are preserved. Some approaches have been proposed for which the ontol-
ogy conforms an conservative extension for a given signature, such as (Armas-Romero
et al., 2016; Cuenca Grau et al., 2008; Gatens et al., 2013; Konev et al., 2013). For ex-
ample, syntactic locality-based module extraction (Cuenca Grau et al., 2008; Jiménez-
Ruiz et al., 2008) proposes six different types of modules for an ontology with different
assumptions and expectations from a module. A comparison of three logically sound
notions of a module (i.e., MEX modules, semantic locality, and syntactic locality) con-
cluded that syntactic locality, which is computationally cheaper to find, can be a good
approximation of semantic locality, and that “in general there appears to be no or little
difference between semantic and syntactic locality” (Del Vescovo et al., 2013). AMEX
modules have been generated by implementing a depletion approach on acyclic ontolo-
gies using provided signatures (Gatens et al., 2013). However, despite the benefits of
their logical grounding, these approaches focus only on the logical properties that the
logical modules must satisfy, but they do not consider the resource consumption.

Using partitioning or modularisation techniques to obtain better performance re-
sults can be seen in MORe (Armas-Romero et al., 2012), a meta-reasoner which tries
to divide the ontology into different modules according to their expressivity and for-
wards them to the appropriate underlying reasoner. For example, MORe would split a
given ontology and use two reasoners, one efficient &L reasoner (i.e., ELK (Kazakov
et al., 2014)) for processing axioms that have the expressivity of the OWL 2 EL profile
in the fastest way possible, and a DL reasoner (e.g., HermiT (Glimm et al., 2014)) for
processing axioms with higher expressivity. This approach, while similar to the nature

of our proposal, does not take into account the available resources.

2.2. Adapting to resources

The mobile reasoner mTableaux implements a weighted partial matching approach
that would terminate the process when it reaches a given RAM threshold, and would
provide the results according to matching conditions provided by the user (Steller et al.,

2009). However, why should we deplete all the device resources if we could just work
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with a specifically task-tailored piece of knowledge? This is specially more important
in these scarce-resources scenarios, where we have to optimise everything as much
as possible. Besides, this approach expects the user/developer to provide successful
matching conditions and weights for matching conditions to give priority in their depth-
first checking algorithm.

In order to guide the extraction taking into account the resource consumption,
we also need to be able to predict the resource consumption of reasoners. In this
regard, there have been several different proposals mainly oriented to predict execu-
tion times (Guclu et al., 2016a; Kang et al., 2012, 2014; Pan et al., 2018; Sazonau
et al., 2014; Zhang et al., 2010) in desktop computers. Other works proposed differ-
ent set of ontology metrics mainly at TBox reasoning level to predict the reasoning
time using classification and regression models (Zhang et al., 2010; Kang et al., 2012,
2014). (Pan et al., 2018) explored their capabilities when trying to predict reasoning
times with big ABoxes, proposing an extension of the metrics which allowed to im-
prove the time processing prediction. Instead of building global models such as these
methods do, (Sazonau et al., 2014) proposed a local prediction method that involves
selecting a suitable small subset of the ontology and use extrapolation to predict total
time consumption of ontology reasoning using the data generated by the processing
of such a small subset. We think that using both of them together will be a starting
point to get enough information to guide the resource aware knowledge adaptation our
proposal requires.

Beyond the semantic reasoning application, (Hutter et al., 2014) showed that it
is possible to predict the performance of algorithms for hard problems, in particular
propositional satisfiability (SAT), travelling sales person (TSP), and mixed integer pro-
gramming (MIP) problems. Prediction approaches based on random forests showed
the best performance. Identifying metrics for the prediction is problem-dependent: the
authors identified 138, 121, and 64 features for SAT, TSP, and MIP, respectively. The
prediction of the performance of other discrete problems (such as the travelling thief
problem, the quadratic assignment problem, or solving quantified Boolean formulae)
but also continuous problems (in particular, both unconstrained and constrained single-

objective optimisation problems) has also been investigated (Kerschke et al., 2019).
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Regarding reasoning specifically on mobile devices, reasoners can be native (Ruta
et al., 2022, 2019; Steller et al., 2009; Van Woensel and Abidi, 2019) (implemented
for a specific mobile device or an edge-computing device) or ported (to reuse existing
semantic reasoners (Bobed et al., 2015)). (Bobed et al., 2015) adapted some existing
reasoners to Android and presented a thorough evaluation of the time performance
of DL reasoners, showing that it is feasible to use them up to “medium-size” ontolo-
gies. While there have been some approaches that have adapted semantic reasoners to
constrained-resource devices (Ruta et al., 2022, 2019; Steller et al., 2009; Van Woensel
and Abidi, 2019); none of them is able to adapt the reasoning to the resources of a
particular device. In particular, (Van Woensel and Abidi, 2019) proposes to optimise
mobile reasoning by de-activating inference rules (for the OWL 2 RL profile) to de-
crease the running time. However, specific resources are not taken into account, so
it could de-activate more rules than needed, and even after de-activating some rules,
the resource limit could still be reached. Furthermore, (Kleemann, 2006) discussed re-
source restrictions (computing power, memory, and energy) from the point of view of
reasoner development, but the implementation cannot adapt to the resources. Finally,
it is worth to mention the only previous work predicting the resource consumption on
mobile devices, which presented a battery consumption prediction module for Android

devices (Guclu et al., 2016b).

2.3. Semantic loss

While there are some works that compute the semantic loss when a query expres-
sion is rewritten, such as the OBSERVER system (Mena et al., 2001), computing the
semantic loss when replacing an ontology with another one is not always considered.
The main reason is that, as already mentioned, ontology modularisation computes a
subset of an original ontology such that the inferences related to the seed signature are
preserved, so there is no semantic loss (with respect to the seed signature).

(Gobin-Rahimbux, 2022) overviews the metrics to evaluate ontology modules and
classifies them into eight categories: naming convention, syntax, module character-
isation and distribution, module structure, module richness, logical criteria, module

relatedness, and module quality. Module quality includes precision and recall, but they

10
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are restricted to taxonomical relations (disregarding other axioms) and do not consider
the consequences of the axioms.

In the context of ontology alignment, (Euzenat, 2007) proposed the definitions of
semantic precision and semantic recall. The idea is that the true and false positives
do not only consider the explicit alignments but also their consequences (i.e., implicit
alignments). In our scenario, semantic precision would be 1 by definition, as all the
axioms in the subontology are part of the original ontology. However, we will consider
a similar notion of semantic recall.

While we are interested in computing the semantic loss between an original on-
tology and a subontology, the notion of semantic difference is more general, as it is
asymmetric and is thus concerned with both axioms that belong to O; and not to O,
and axioms that belong to O, and not to O;. Measures to compute the semantic dif-
ference are also typically based on the percentage of consequences which change with

respect to another ontology (Pernisch et al., 2021).

2.4. Open issues

Thus, after analysing the available approaches, we have identified two main points

that hinder the adoption of semantic reasoning where resources are constrained:

1. Lack of interaction and collaboration between reasoning and knowledge extrac-
tion for a better optimisation of knowledge processing on resource constrained
scenarios. The MORe approach indicates that it is promising to explore such a
possible interaction for other purposes such as mobile devices.

2. Lack of generalisation, because previous works on the subject are embedded in
various research prototype implementations and cannot be easily generalised.
For example, the weighted matching algorithm (Steller et al., 2009) is embedded
in mTableaux DL reasoner and it would essentially require a complete reimple-

mentation if it is expected to be used in an EL reasoner.

We aim at proposing a flexible architecture that can adopt any particular reasoner
and knowledge extraction technique. Furthermore, previous approaches to measure the

semantic loss must be adapted to our framework.

11
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3. Adaptive Reasoning

In this section, we firstly propose an architecture that evaluates whether a partic-
ular device can process an ontology under some resource constraints, and, if it is not
the case, adapts the reasoning task to support as much knowledge as possible. Then,
we discuss strategies for the prediction of the resources consumption and a possible
integration in a more general case, an intelligent framework selecting among local rea-

soning, global reasoning, or a hybrid approach following (Bobed et al., 2017).

3.1. Architecture of the Proposal
Our resource-aware system is flexible and can receive a wide plethora of con-
straints. For the sake of concrete illustrations, we will provide a non-exhaustive list

of examples:

o Hardware constraints such as CPU capacity, memory, battery consumption, con-
nectivity and bandwidth, or screen size. In some cases, such as memory and

battery, this includes not only the maximum value but also the available one.
e User preferences, such as a maximum running time.
e Non-functional properties, such as a required user privacy level.

e Feedback from the system, such as a prediction of the cost to reason with the

current subontology or the semantic loss with respect to the original one.

e The input ontology (size, expressivity ...) and the particular reasoning task, as

they affect the cost of the reasoning.

Figure 2 shows the main high-level components and steps of our architecture, which

we are going to discuss in detail:

1. First, the Constraint Evaluation Module receives the ontology and the constraints,
and evaluates the constraints according to the features of the ontology and the re-
sources of the device. If the ontology fulfils them, it is forwarded to the reasoner
(step 4); otherwise, the ontology as well as the constraints are passed to the

Knowledge Extraction Module.

12
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Figure 2: High-level architecture for the knowledge adaptor module.

2. The Knowledge Extraction Module tailors the knowledge according to the given
constraints in an iterative way. In particular, it computes a subontology of the
input ontology, taking into account the constraints, trying to keep the most impor-
tant knowledge to solve the reasoning task, and trying to minimise the semantic
loss. This flexible architecture will be instantiated on Section 4.

3. Once extracted, the subontology is returned for its evaluation to the Constraint
Evaluation Module. Therefore, we repeat the loop predict cost of the reason-
ing - evaluate constraints - extract subontology - predict again as many times as
needed, until obtaining a subontology which has been estimated to be manage-
able by the semantic reasoner”.

4. Finally, once the knowledge has been estimated to be manageable by the seman-

tic reasoner, the execution of the reasoning task is performed over the original

ontology or a subontology that meets all the constraints.

The proposed architecture assumes that reasoning is performed locally on the user

device. However, the resource-aware reasoning module could be integrated in a broader

2If the subontology is finally empty (in fact, it would include at least the signature), it means that there

was no way to fulfil all the given constraints.
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framework, where reasoning does not need to be performed locally. (Bobed et al.,
2017) proposed three main strategies to be adopted in a mobile scenario, but they can
actually be considered in any scenario with limited resources. Briefly, those strategies

are:

o Server-side External Reasoner: External powerful servers perform all the calcu-
lations. However, the application might need to send a lot of data through the
network, which can be a serious limitation in mobile computing environments,
and user privacy can be compromised as the user’s data would be sent to an

external server.

e Device-side Local Reasoner: Calculations are computed on a local device, which
is the best choice to keep privacy or when network communications are not re-
liable. As limitations, reasoning becomes challenging in devices with limited
resources. For instance, there is some evidence that reasoning in mobile devices
might be affordable only for small or not very expressive ontologies when using

ported reasoners (Bobed et al., 2015).

o Hybrid-reasoning Approach: In this last strategy, some parts can be computed
locally and others can be computed on an external server, depending on the re-

source available in runtime.

The objective would be to automatically determine which one is the best option to
use a semantic reasoner. The optimal (or maybe Pareto-optimal) choice depends on the
application or, more specifically, on several factors, and is left as future work.

In the following, we detail an important part of our architecture: how resource

consumption can be predicted.

3.2. Predicting Resources Consumption

To perform the resource consumption prediction, we could use a model to predict
each single resource. One problem of this approach is that we do not have any feedback
about which features might be interesting to modify in order to make the ontology fit

in the device. This might lead to a blind search, having to apply different extraction

14
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heuristics in a blind way. However, the works (Ribeiro et al., 2016, 2018) suggest that
we could obtain some explanations in the feature space which could be used to guide
the extraction as well. Moreover, some works such as (Sazonau et al., 2014) suggest
that some features are strongly correlated and could at least give us some clues about
how to proceed (in that example, the number of axioms was one of the most relevant
features to predict OWL 2 DL reasoning time)?.

On the other hand, to be able to act on the source ontology and know which pa-
rameters to focus on in order to meet the criteria, we considered having models that,
given a (predicted) resource limit, return which feature/s should be modified and how
to meet the criteria. We aimed at exploiting the strong correlations that exists between
the number of axioms and the predicted values (Sazonau et al., 2014); however, the
initial tests about the accuracy were not good, so further analysis using explainabil-
ity techniques in the feature space must be carried out before considering this option.
Thus, as a strategy to reduce the resource consumption, we have adopted an axiom size
reduction heuristic, leaving the exploration of these techniques as future work.

Besides, given the heterogeneity of the devices, we might need to train a model for
each family of devices: the ontology features do only depend on the input ontology,
but the actual resource consumption is dependent on the actual characteristics of the
device, thus requiring a model for each group of them (trained once, and shared among
all of them). In order to simplify the extraction of training data for new devices, it could
be interesting to use Antutu (in mobile devices) or PassMark (in desktop computers)
values to scale the values obtained for other devices. Note as well that the prediction
depends on the concrete reasoning task, but this will be explained in detail in Section 4.

We are aware that the resource-constrained device might have to reason with in-
complete information (depending on the knowledge extraction technique used), but it
is important to stress that, since semantic reasoners implement monotonic reasoning,

the results would be correct always (although may be incomplete). This approximate

3In order to show the feasibility of our approach, in the prototype described in Section 4, we adopted time
as our main limiting resource and use the already studied ontology features (Kang et al., 2012; Pan et al.,

2018) to predict the reasoning time.

15



374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

reasoning is not the optimal option, but, when resources are not enough, it is prefer-
able than providing no result at all. Furthermore, one of the novelties of our current

proposal is how to measure the semantic loss incurred.

4. Instantiating the Architecture

In this section, we firstly analyse some strategies to instantiate the architecture pro-
posed in the previous section (Section 4.1), and then report our prototype implementa-

tion for a particular choice of those strategies (Section 4.2).

4.1. Design of the Solution

First of all, we have to note that it is not possible to apply directly “classical”
modularisation or partitioning methods, as they do not take the resources into account.

Moreover, in the previous section we have omitted the requested reasoning task
(i.e., what is the knowledge being used for) on purpose. Indeed, the knowledge adap-
tation module must take into account the nature of this target task. In fact, as we will
see in the following, the nature of the target task will give us a starting point to guide
the extraction.

Figure 3 shows an instantiation of our proposal, highlighting the different works
that could be applied to each stage. It takes as input an ontology, a list of the resource
constraints, and the reasoning task that has to be performed. Note that the approach
might take several iterations: if after computing a subset of the original ontology, the
subset is still too big for the device resources, another round of knowledge extraction

is performed. The main components are as follows:

1. Resource Predictor Model/s: As discussed in Section 2, several metrics to pre-
dict the reasoning time (on desktop computers) and the battery consumption (on
mobile devices) have been proposed in the literature. These metrics can be con-
sidered in our approach as a starting point, building a model for each of the
resources that whose consumption we want to predict.

2. Constraint Evaluation Module: The predictions obtained by the models for

each resource would be taken into account in a multicriteria decision problem
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Figure 3: Possible implementation of the knowledge adaptor module.

Ontolog
(meeting the criteria)

deciding whether reasoning is feasible or not. In the latter case, it would be nec-

essary to further reduce the amount of knowledge until it is feasible. In principle,

the system could interpret all constraints in a conjunctive way and ensure that all

of them are satisfied. However, more sophisticated solutions are possible: the

user could define the most important constraints and the system could go on if

some of the less important constraints are satisfied, there could be an interval of

values (for example, for the maximum running time) rather than a strict value,

etc.

3. Knowledge Extractor: Its purpose is to compute a subontology of the input

ontology according to the resource constraints and reasoning task. Firstly, it
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might invoke the Signature Obtainer, described below, to get a seed signature.
Secondly, it invokes the Module Extractor and returns the computed subontology.
At this point, the output ontology could be empty if all the constraints cannot be

met given the available resources.

. Signature Obtainer: The reasoning task to solve might require a signature seed

(i.e., a set of atomic concepts, individuals, object properties and datatype prop-
erties to start with) or not. An example with signature is an instance retrieval
query, where the user wants to retrieve books that have been written in English.
The signature seed would be {Book, writtenIn, english}. An example without sig-
nature is ontology graphical representation, where the user just wants to browse
the available knowledge.

To compute the subontology, there are several possible choices about which
knowledge to keep and which to discard. If the task imposes a signature seed,
then it should guide the extraction procedure. However, when the target task
does not impose a signature or we cannot derive an useful signature from the
context of the application, we have two options: trying to find a signature seed,
or not using a signature seed. In this latter case, we can use different strategies

such as the following ones (the list is by no means complete):

e To restrict to some OWL 2 profile discarding the other axioms, or a less

expressive DL language.

¢ To approximate the ontology to some OWL 2 profile, e.g., as in the syntactic-

based approximation of TrOWL.

o To keep just the subclass taxonomy of the ontology.

More generally, we could define our preservation language, defining the axioms
and complex concepts to be kept. This is similar to the proposal of (Cuenca Grau
et al., 2012). Although in their approach there is no control over the particular
values of the ontological features we would like to change, we could act further
in the extraction by limiting the applicability of different grammar rules (e.g.,

limiting the depth of the parsing trees).
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If we consider it relevant, we can obtain a seed signature attending to general
criteria (Signature Obtainer in Figure 3). For this purpose, we could apply, for
example, the detection of Key Concepts proposed by (Peroni et al., 2008). These
concepts would comprise the signature seed in the absence of such for the task.
In fact, they could be added as metadata (OWL 2 annotation) in the ontology to
compute them offline and just once, as it is an expensive task.

5. Module Extractor: Apart from restricting the expressivity, if the target task pro-
vides somehow a signature to exploit (or we have been able to define a relevant

one), we can follow several strategies (again, we do not intend to be exhaustive):

e Incremental approaches: given an initial signature seed, add more axioms
corresponding to the seed signature. After that first step, one could also
add axioms corresponding to the new signature introduced by the previous

axioms.

e Pruning approaches: given an initial ontology, remove axioms. Following
the spirit of the extraction with no signature, a possible approach could
be to limit the “locality” of the axioms up to a certain depth. This would
imply to apply the syntactic rules for the acceptance of the different axioms
in (Cuenca Grau et al., 2008) parameterised to limit the activations/depth

to which a particular rule can be applied.

e Hybrid approaches or variants of the above approaches.

In the case of multiple criteria, it is necessary to decide an order for the criteria to
be relaxed (for example, we could go first for the most restrictive constraint, but other

strategies could be studied in the future).

4.2. A Prototype Implementation

As a first step towards our objectives, we have implemented a prototype to show
the feasibility of the whole pipeline, with a specific choice of the multiple alternatives
discussed in the previous section. Our prototype takes an input ontology and computes
a subontology, considering a maximum reasoning time as the only limited resource, on

a desktop computer. As we have seen in Section 2.2, there are only prediction models
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for the reasoning time on desktop computers and for battery consumption on mobile
devices. We advocate building our prototype for desktop computers because reasoning
on mobile devices is limited to small and medium ontologies (Bobed et al., 2015), so it
is not possible to process a meaningful benchmark. The only supported reasoning task
is ontology materialisation using the OWLAPI (method precomputeInferences).
The prototype uses OWLAPI 3.5.74(Horridge and Bechhofer, 2011) as program-
ming API and is able to use any semantic reasoner implementing the OWLReasoner
interface. In particular, we used HermiT 1.3.8 (Glimm et al., 2014) to gather the data
for training the models and to perform all the materialisations required. The reason
is that HermiT has already been successfully used to predict the reasoning time (Pan

etal., 2018).

Definition 1. Let O be an ontology. The materialisation of O, denoted mat(0), is the
set of consequences that can be derived from O by using the types of InferredAxiom-

Generator supported in OWLAPI 3.5.7°, namely

o InferredClassAssertionAxiomGenerator,

e InferredDataPropertyCharacteristicAxiomGenerator,
e InferredDisjointClassesAxiomGenerator,

o InferredEquivalentClassAxiomGenerator,

o InferredEquivalentDataPropertiesAxiomGenerator,
e InferredEquivalentObjectPropertyAxiomGenerator,

o InferredinverseObjectPropertiesAxiomGenerator,

InferredObjectPropertyCharacteristicAxiomGenerator,

4We kept this version as the original prediction features(Kang et al., 2012; Pan et al., 2018) were devel-

oped with such one.
Shttps://javadoc.io/doc/net.sourceforge.owlapi/owlapi-distribution/3.5.7/

index.html
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InferredPropertyAssertionGenerator,

InferredSubClassAxiomGenerator,

InferredSubDataPropertyAxiomGenerator, and

InferredSubObjectPropertyAxiomGenerator.
In the following, we will discuss each step of the prototype in detail.

Resource Predictor Model. In order to train the model, we used the whole set of
metrics used in (Pan et al., 2018) to predict the reasoning time, which included the
metrics proposed by (Kang et al., 2012). The models have been trained using scikit-
learn 1.2, which allows to export the models to PMML (Predictive Model Markup
Language) (Guazzelli et al., 2009) to import them afterwards in other applications.
The values of those metrics only depend on the input ontology and not on the de-
vice. Therefore, in order to train several devices, such values can be computed just
once, and possibly on a faster external server. However, recall that each family of de-
vices will require to have their own prediction model. Besides, when actually using
the system, it is important that those metrics can be efficiently computed on a limited-
resource device or, alternatively, we can assume that the input ontology has been an-
notated with them (as this is not standard) or the existence of an external service to

compute them (as we will need to assume that there is some connectivity).

Constraint Evaluation Module. As above mentioned, our current implementation is
focused on time as resource. This module uses the model trained to predict the time
and decide, given a timeout, between whether the criteria is met or not, and if not,
whether there are more actions (i.e., reduce the size of the ontology) that we can apply
to try to meet the requirements.

As reduction criteria, we currently reduce the number of axioms by a 25%° at each

prediction step iteratively until the criteria is predicted to be met (i.e,. we repeat the

6As we will see in Example 2, we also tried a 12.5% reduction with GALEN-Full-Union_ALCHOI(D)

ontology and obtained the same results of the reasoning, but higher materialisation times.
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loop predict - evaluate constraints - extract knowledge - predict again as many times

as needed).

Signature Obtainer. We have integrated Key Concept Extraction (KCE) technique (Per-
oni et al., 2008) to find the top most important k concepts. To compute them, we
adapted the implementation provided by (Peroni et al., 2008): when KCE API retrieved
more than the demanded k concepts, we just selected the first k ones, as they are equally
important (according to our own source code inspection). The value k could depend on
the available resources.

We noticed that KCE implementation is not efficient enough, and it usually does
not finish on an average mobile device with medium-size ontologies. Therefore, we
assume that KCEs have been computed offline (for example, on a desktop computer or
a remote server) and that they are represented as metadata attached to the ontology via

an OWL 2 annotation property keyConcepts.

Module Extractor. The extraction technique we have implemented to compute the sub-

ontology while having control over its size proceeds as follows:

1. Starting from the given signature, it extracts all the subclass hierarchical infor-
mation of its entities, obtaining a minimal skeleton’. That, it assumes a preser-
vation language built using axioms of type A SubclassOf B, with A and B being
atomic concepts. Then, it updates the signature with all the terms included in the
skeleton.

2. Ititeratively adds logical axioms related to the updated signature, expanding the
covered part of the original ontology in a breadth-first way, until reaching the
maximum number of axioms computed by the Constraint evaluation module.
Those logical axioms can be OWL 2 axioms of any type. In each step, the

signature is also updated and expanded with the newly added terms.

While pretty straight-forward, this approach allows us to reduce the size of the on-

tology while keeping the information that we have deemed important. In fact, keeping

TThis skeleton can also be built in an incremental way to avoid running out of resources
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the hierarchical skeleton could be substituted by any conservation language.

Note that, as we reduce knowledge in an iterative way, we cannot recover knowl-
edge discarded in previous iterations. Therefore, knowledge extraction should not be
too aggressive in discarding axioms, as a more conservative extraction could be re-
fined in next iterations. An alternative strategy could be, for example, if the computed
subontology is not satisfactory, to find a subset of the signature which tries to max-
imise the amount of knowledge that the module extracts and which is still within the
limits. After that, we could add progressively the information available in the module
obtained: 1) adding more axioms corresponding to the seed signature, or 2) adding ax-
ioms not corresponding to the seed signature. However, we consider the exploration of

the different strategies as future work.

5. Measuring the Semantic Loss

Apart from leading to a lower resource consumption (due to the simplification and
reduction of the size of the processed ontologies), these potential approximations will
have an associated semantic loss which has to be measured (and possibly be predicted)
to be part of the decision process and to provide users with a confidence degree on the
system answer.

We advocate to adapt the notion of semantic recall proposed by Euzenat (Euzenat,

2007) in the context of ontology alignment.

Definition 2. Given an ontology O, let Cons(O) be the set of consequences that follow
from O.

The syntactic recall is defined as the proportion of axioms that had been extracted

from the original ontology.

Definition 3. Let two ontologies O and O, where O’ is the result of any extraction
process over O (i.e., O' C O syntactically). The syntactic recall of O" w.r.t. O is given
by:

(o4

SynRecall(O’,0) = 0l
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While syntactic recall compares original axioms, semantic recall compares conse-

quences.

Definition 4. Let two ontologies O and O, where O’ is the result of any extraction
process over O (i.e., O’ C O syntactically). The theoretic semantic recall of O’ w.r.t. O

is given by: o
|Cons(O')|

SemRecally(O',0) = |Cons(O)|

Potentially, Cons(O) and Cons(QO’) can be infinite, so we have to restrict it to the

set of axioms that we can materialise from the extracted module:

Definition 5. Let O and O’ be two ontologies, where Q' is the result of any extraction
process over O (i.e., O C O syntactically). The practical semantic recall of O’ w.rt. O
is given by:

|mat(O")|

SemRecall(O',0) = mar(O)|

where mat(O) C Cons(0) is the ontology containing all the axioms that can be materi-

alised by a reasoner from O.

The definition of the ontology that can be materialised by a reasoner from an in-
put ontology mat(O) could be defined in many different ways, depending on the axiom
types that the reasoner takes into account. In this paper, we use the strategy imple-
mented in our prototype, presented in Definition 1.

Note that, following Definition 5, we can work with different versions of the ontolo-
gies. In particular, we could choose to work under different materialisation regimes,
where we could choose to have different kinds of inferences materialised in order to
improve the semantic loss analysis®.

Depending on the particular task, it can be convenient to extend further the defini-

tion to take the signature of the extracted subontology into account:

Definition 6. Let O and O’ be two ontologies, where O’ is the result of any extraction

process over O (i.e., O' C O syntactically). The signature-aware practical semantic

80f course, this requires the cost of materialising the different ontologies, so it has to be defined carefully.
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recall of O’ w.rt. O is given by:

mat(0")

Recall / =
S emRecalls (', 0) restrictS ig(mat(0), Sig(O"))

where restrictSig(O,S) is the set of axioms in O which refer to any element in the

signature S, and Sig(Q’) is the signature of O'.

The signature of the extracted ontology must not be confused with the seed signa-
ture of the subontology, i.e., the signature used as starting point for the subontology
extraction. This leads, for the sake of completeness, to define the generalisation of the

definition to work with any particular signature externally defined:

Definition 7. Let O and O’ be two ontologies, where Q' is the result of any extraction
process over O (i.e., O’ C O syntactically). The externally defined signature-aware
practical semantic recall of O’ w.r.t. O is given by:

restrictSig(mat(Q’), S)

SemRecall§,;(0',0, S) =
emRecalls g ) restrictS ig(mat(0), S))

It follows that S emRecalls;c(O',0) = S emRecallf 16(0',0,8ig(0").

Finally, note that we could use the above definitions to compare two different sub-
ontologies O’ and O” extracted from the same original ontology O by relaxing the
condition of syntactical inclusion (as they might extract different parts of the original
ontology). In this case, the precision would be always 1, as all the axioms comes from

the same source, but we would be calculating the Syntactic and Semantic Overlap:

Definition 8. Let two ontologies O’ and O”', where both O' and Q" are the result of
any extraction process over O (i.e., O’ € O and O"' C O syntactically). The syntactic
overlap of O’ and Q"' is given by:

SynOverlap(OQ’,0") = %

Definition 9. Let two ontologies O and O, where both O’ and Q" are the result of
any extraction process over O (i.e., O' C O and O" C O syntactically). The semantic
overlap of O’ and Q"' is given by:

|mat(0") N mar(O”)|
|mat(0’) U mat(O")|

SemOverlap(O',0") =
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Note that we have considered the semantic loss between a pair of ontologies, but
one could also define semantic loss for specific reasoning tasks.

In the following section, we will apply these measures in order to evaluate how
our initial implementation of the pipeline behaves in terms of semantic loss. As a
baseline, we will consider the syntactic recall and the relaxed definitions (Overlaps)
in order to evaluate our proposed technique to a safe-module extraction one (locality-

based modularisation (Cuenca Grau et al., 2008)).

6. Evaluation

In order to show the feasibility of our approach, we have focused our experiments
on several particular aspects: 1) we first test how accurate the prediction of the exe-
cution time was with our dataset (Section 6.1), 2) then, we evaluate how such accu-
racy affects our approach regarding materialising ontologies within a restricted timeout
(Section 6.2), 3) we evaluate the extraction technique regarding the semantic loss in-
curred when compared to the original ontologies and safe-modules (Section 6.3), and

4) we discuss some detailed examples involving particular ontologies (Section 6.4).

Experimental Setup. For the experiments, we used the ORE 2015 dataset (Parsia et al.,
2016), composed of 16,555 independent ontologies (many of them, real ontologies).
The dataset was developed by independent researchers and was not designed for this
task, so there is not any bias. We adopted Random Forests as a machine learning model,
using 500 trees as hyperparameter. We explored other models such as Multilayer Per-
ceptron and Linear Regression, but Random Forests were the best ones out of the shelf
providing results that were good enough for our purposes, and we chose them for the
sake of simplicity. (Hutter et al., 2014) also found that random forest models showed
the best results to predict the performance of some algorithms to solve combinatorial
problems (SAT, TSP, and MIP). We used Hermit 1.3.8 as reasoner and established a
maximum timeout of 300 seconds for materialising the ontologies. Figure 4 shows the
distribution of the execution times for the ontologies that were materialised under such
a timeout: around 95% of ontologies are materialised before 100 seconds, around 98%

before 200 seconds. The reasoning task to solve was to compute all the inferences
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available using the OWLAPI (we materialised all the inferences OWLAPI allows for,
adding all the axioms to both the TBox and ABox). Finally, all the experiments were
run on a desktop computer with an Intel Core i17-6700K processor (4 cores, 8 threads,

although no parallelism was applied) at 4.00 GHz and 32 GB of RAM memory.

Materialization Time Distribution
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Figure 4: Distribution of ontology materialisation time. Axis-x shows materialisation time intervals, in sec-

onds. Axis-y shows number of ontologies analysed (left) and percentage of materialised ontologies (right).

Our extraction method provides us with the capability of establishing a size for
the module in number of axioms, but we needed to assess its semantic conserva-
tion capabilities. Thus, as a baseline to compare it in the semantic loss experiments,
we have considered locality-based modularisation, using the Locality Module Extrac-
tor (Cuenca Grau et al., 2008)°, which also has a Protégé plug-in called ProSE (Jiménez-
Ruiz et al., 2008): Starting from a signature, we extract the Upper Modules (UMs) from
L-locality (as suggested for the authors to reuse terminologies). Because UMs does not
take into account the device resources, we needed to fix the number of axioms consid-
ered for the sake of comparability: the number of axioms to be extracted by our method

is given by the size of the correspondent UM module, and we set k € {5, 10, 15, 20}.

9http://www.cs.ox.ac.uk/isg/tools/ModuleExtractor
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6.1. Precision of the Resource Prediction

First of all, we double checked that the 143 ontology features proposed in (Kang
et al., 2012) and (Pan et al., 2018) were appropriate for our purposes. For this, we
first materialised the whole dataset. Establishing the timeout of 300 s, we managed to
obtain the materialisation time for 10,932 ontologies.

With such data, we adopted a 10-fold cross-validation approach and two setups:
1) using just the data (ontological features + materialisation time) for the ontologies
materialised to train the models, and 2) augmenting the data with subontologies ob-
tained from the original ontologies and materialised under the same conditions (i.e.,
the training test contains the original ontologies plus a set of subontologies). The ra-
tionale was to check whether giving further insight about intermediate points for the
ontologies provided the models with relevant information, as suggested in (Sazonau
et al., 2014). In particular, the data augmentation was carried out using the locality-
based modularisation (UM) and our extraction method with 5, 10, 15 and 20 concepts
as signature (obtained with KCE).

Table 1 shows the R? score, MAE (Mean Average Error), and RMSE (Root Mean
Square Error) obtained for both setups. Split size states the training and the test sizes
for each case. Recall that R* € [0, 1], whereas MAE and RMSE are measured in

seconds.

Original data | Augmented data
Split size | 9839/1093 86113/9575

R? 0.904 0.848
MAE 3.118 0.801
RMSE 12.690 6.709

Table 1: R?, MAE and RMSE values for both setups using Random Forests with 500 trees. The splits for
CV including the modules were done splitting the ontologies and then selecting the modules to avoid data

leaking.

We can see that the high R? values show that the features used are informative
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enough to predict the time for materialisation'®. Observe that although augmented data
have a smaller R? score, MAE and RMSE values suggest that the model trained on this
dataset is more accurate. However, given that the data augmentation technique might
be computationally expensive, we will use original data to avoid such a cost. The errors
for the original data are low as well, and we will check that their precision is enough

for our purposes in the next section.

6.2. Adjusting the Available Knowledge to the Resources

We now turn our attention to whether the previous precision is good enough for
our proposal. In this case, we use the model trained with just the ontologies (modules
are not used), and fix the signature size to 10 concepts (the most important concepts
according to KCE signature extraction) and a timeout of 10 seconds (which seems a
reasonable time for a final user to wait). We split the results into two different sets:
the 10876 ontologies that were materialised within the 300 s timeout (those used in
the previous section), and the 5,679 other ones which were not handled within such a
timeout.

Table 2 shows two confusion matrices for the ontologies within the timeout. The
left matrix shows the contrast between the predicted time and the real one for the orig-
inal ontologies. In this matrix, the worst situation would be the false positives (41
ontologies were predicted to be under the 10 seconds limit, but actually required more
time, which is a 0.38% of the whole dataset). The right matrix shows the results after
iterating to reduce the size of the ontologies, as explained in Section 4.2 (i.e., reducing
iteratively the size of the ontology a 25% at each step, until the prediction consumption
met the criteria).

We can see how, for the final results (after having predicted and extracted the mod-
ules), summing up the “< 10” column of the right matrix, we would have 10,654

ontologies which we estimated that will be processed under 10 seconds (97.9% of the

10 A5 already mentioned, we explored as well the possibility of training a model to predict the number of
axioms, but it was not accurate enough to do the way back for the prediction and the iterative approach was

deemed to be more suitable for showing the feasibility of the approach.
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Real Time Final Time

<10 > 10 <10 > 10
® 8943 41 8969 15
E| <10 <10
; (82.23%) | (0.38%) (82.47%) | (0.14%)
,‘3 308 1584 1685 207
2| >10 > 10
& (2.83%) | (14.46%) (15.49%) | (1.90%)

(a) Predicted Time: Initial prediction (b) Predicted Time: Final results

Table 2: Confusion matrices for the 10,876 ontologies that were materialised within the timeout of 300 s.

set of materialised ontologies). Note that this success ratio includes both the ontologies
predicted correctly from the beginning (8969), and those processed and which ended
taking less than 10 s (1685).

For the ontologies that were not processed within 300 s (5,679 ontologies, 34.30%
of the dataset), we checked how many were predicted to be out of the 300 s timeout
and of our 10 s limit. None was predicted to be above the 300 s timeout, showing a
limitation of our selected machine learning model (we leave the use of better generalis-
ing models as future work). On the other hand, 899 ontologies (5.43%) were predicted
to be within the 10 s. limit which was obviously wrong, but curiously they all were
ontologies that HermiT could not process''. Nevertheless, assuming that all of them
were above the 10 s timeout, we managed to reduce and process 3,465 (20.93%) out of
4,490 ontologies (27.12%) with our approach within the established time out (the rest

of the ontologies, 1,189 (7.18%), were not handled by that version of HermiT).

6.3. Evaluation of the Semantic Loss

Once we tested the feasibility of the knowledge extraction pipeline, we focused on
measuring the semantic loss of: 1) our extraction technique when compared to logic-
based module techniques, and 2) the actual application of our pipeline when compared

to using the full ontologies.

""Mainly due to inconsistencies, malformed literals, and unsupported characteristics.
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Comparison to Locality-based Modules

As commented in the experimental setup, in order to check if our extraction method
was good enough for our purposes, we compared the overlap of our extracted partitions
to locality-based modularisation (Cuenca Grau et al., 2008) extracting the Upper Mod-
ules (UM). In particular, out of the 16,555 ontologies, we were able to extract and
materialise both modules (ours and UM) for 14,255 of them. Figure 5 shows the com-
parison in terms of syntactic and semantic overlap as defined in Section 5. We add the
reduction percentage as we noticed that, even though we established the size of UM
modules as an upper bound for our extraction procedure, in general UM modules were

still bigger than ours as ours exhausted the extraction earlier.

Overlap of our Approach Compared to UM-locality

1.000

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100

0.000

5 10 15 20

W Syntactic Overlap  0.491 (0.267) 0.529 (0.251) 0.543 (0.246) 0.566 (0.244)
® Semantic Overlap  0.735 (0.250) 0.723 (0.238) 0.721 (0.228) 0.734 (0.227)

m Avg. Reduction

(Logical Axioms) 0.891 (0.163) 0.894 (0.116) 0.895 (0.099) 0.90 (0.094)

Figure 5: Syntactic and semantic overlap between UM modules and ours, along with the relative size of our
modules (Reduction) compared to UM ones (our modules are about 10% smaller than UM ones). The X axis

depicts the size of the signature, and the results in the table are read as average (standard deviation).

We can see how the syntactic overlap increases as the signature does: bigger sig-
natures lead to bigger UM modules, which in turn allows for bigger signatures and
more choices for our extraction approach. However, note how the semantic overlap
remains stable, implying that we keep important knowledge (in this case, the taxon-
omy skeleton which we decided to include in our conservation language, is important

for both extraction techniques). Moreover, we have to take into account as well that

31



724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

our modules are about a 10% smaller than UM ones, so it can be argued that we still
have some room for adding more axioms we deem important, to increase the overlap

without exceeding the upper bound number of axioms to be extracted.

Comparison to the Original Ontologies

In this case, we focus on the 1,892 ontologies that were predicted to be above
the 10 s timeout as they were the ones subject to reduction. We established a com-
bined timeout of 1,200 seconds for materialising both ontologies (the original and the
extracted one), and calculating both syntactic and semantic recall values (which, fol-
lowing the work by Euzenat et al. (Euzenat, 2007), required checking whether each
axiom was inferred from the original ontology), which led to a final set of 1,360 anal-

ysed ontologies.

Semantic Recall and Reduction
1.000
0.900
0.800
0.700
0.600
0.500
0.400
0.300

0.200
0.100 l
0.000

Total Small Medium Large
® Syntantic Recall  0.339 (0.161) 0.404 (0.150) 0.343 (0.151) 0.186 (0.197)
m Semantic Recall 0.325 (0.205) 0.402 (0.219) 0.320(0.198) 0.251(0.223)

Avg. Reduction

(Logical Axioms) 0.361 (0.146) 0.412 (0.144) 0.359 (0.140) 0.304 (0.193)

Figure 6: Syntactic and semantic recall between the original ontologies and our subontologies, along with
the relative size (Reduction): global recall without taking into account any signature.The results in the table

are read as average (standard deviation).

Figures 6— 8 show the syntactic and semantic recall for these ontologies calculated
in three settings: a) globally (Definition 5) in Figure 6, b) restricted to the signature of
the extracted subontologies (Definition 6) in Figure 7, and c) restricted to the original

seed signature (Definition 7) in Figure 8. We show the total averaged values along with
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Semantic Recall and Reduction (Extended Signature)

1.000

0.900

0.800

0.700

0.600

0.500

0.400

0.300

0.200

0.100 I

0.000

Total Small Medium Large

m SyntanticRecall  0.432 (0.174) 0.465 (0.150) 0.444 (0.161) 0.238 (0.238)
= SemanticRecall  0.421 (0.243) 0.464 (0.227) 0.420 (0.237) 0.369 (0.326)
= Avg.Reduction | o) (5 147) 0.412 (0.145) 0.359 (0.140) 0.304 (0.196)

(Logical Axioms)

Figure 7: Syntactic and semantic recall between the original ontologies and our subontologies, along with
the relative size (Reduction): recall conditioned to the extended signature. The results in the table are read

as average (standard deviation).

Semantic Recall and Reduction (Initial Signature)
1,000
0,900
0,800
0,700
0,600
0,500
0,400
0,300
0,200
0,100
0,000
Total Small Medium Large

Figure 8: Syntactic and semantic recall between the original ontologies and our subontologies, along with
the relative size (Reduction): recall conditioned to the initial signature. The results in the table are read as

average (standard deviation).

the standard deviations (between brackets, as well as the values aggregated regarding

the size of the original ontologies, namely, small ontologies (#axioms < 500), medium
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ones (500 < #axioms < 5,000), and large ones (#axioms > 5,000)!%.

We can see how the results are stable across all the ontology sizes, and strongly
correlated to the reduction achieved conditioned to the signature of the subontology'?,
but for the initial signature, which show that the main information about the initial
signature is kept in our extracted subontology. When analysing the data clustered by
ontology size, we can see that, for small and medium ontologies, both syntactic and se-
mantic recall values are quite similar, but syntactic recall is notably lower than semantic
one for large ontologies, which remarks that the information we keep in subontologies
is semantically relevant. These results, along with the overlap achieved by our approach
with UM-modules, show that our proposal is capable of adapting the knowledge with-
out losing the most important parts, regarding the given signatures. Therefore, our
definitions of semantic loss, based on the proportion between the number of inferences

with respect to the ideal number of inferences, seem realistic.

6.4. Detailed examples

In this section we show two concrete cases of our prototype and architecture, using

real ontologies for ontology visualisation and retrieval, respectively.

Example 1 (Ontology visualisation). A final user is navigating through and ontology
and want to visualise its relevant classes and their individuals. More precisely, 00104
(3,573 logical axioms, 641KB file), one of the ontologies in the ORE 2015 dataset
which includes information about geographic locations (#GEOREF), types of food com-
modities (#F00DS-COMMODITY), and different languages (#LANGUAGE), among many
others things. The user is located at class #FO00DS-COMMODITY and wants to navigate
through more specific classes. To do so, the ontology navigation would call a semantic
reasoner to retrieve the subclasses of the original class. (Note that retrieving the sub-
classes of class could be interesting in other scenarios, such as to refine the results of

an instance retrieval query when there are too many results.) Unfortunately, semantic

12We classified them as in the ORE 2013 Workshop, by counting the logical axioms in the original ontol-

ogy (that is, before doing any reasoning) (Gongalves et al., 2013)
13Note that this signature might be quite larger than the seed one.
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reasoning does not finish in a 300 seconds timeout: the ontology is too complex for
hisfher device (this actually happens using the environmental setup described in this
section). Therefore, using a traditional reasoner, the user would receive an empty an-
swer (reasoners do not retrieve subclasses as they compute them, but at the end of the
process, where all of them have been computed).

Instead, using our prototype (with #GEOREF, #LANGUAGE, and #FO0DS-COMMODITY
as signature), reasoning finishes within 10 seconds, so the final user could happily
navigate to any of the subclasses of ##00DS-COMMODITY.

In fact, if we query the subontology retrieved by our prototype to obtain the descen-

dants and instances of the following concepts, we get the following results:

e #GEOREF: 100% (265/265) of the instances (the original concept did not have

subclasses).

o #LANGUAGE: 100% (77/77) of the descendants and a 100% (263/263) of the in-

stances.

e #FOODS-COMMODITY: 100% (45/45) of the descendants (the original concept did

not have instances).

While the available knowledge is not complete, at least, we managed to provide
the user with information about these concepts and an application could use it, maybe
notifying the user that is not complete. For example, if we take SWEET Ontology
Phenomena Atmosphere'®, and we would like to retrieve all the phenomena that have
a planetary scale (Phenomena and hasSpatialScale value PlanetaryScale),
our approach it is able to retrieve a 3.81% (13/341) of the subclasses, being able to
answer some concepts such as Climate or AtmosphericPhenomena. This is due the
fact that the prediction is not so accurate in this case and reduces the amount of axioms
too conservatively (we have checked that our approach, adding more axioms, increases
the retrieval results). Note that while the percentages might seem low sometimes, the

alternative was to raise directly an error and not providing any answer at all.

1400412d8c-£97f-4e3d-b184-9a8133e74e61_phenWave . owl_functional.owl in the dataset.
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Example 2 (Knowledge Retrieval). In this example, a final user wants to know as
much as possible about any pathology that can occur in the Liver. In this case, the
application would be using GALEN-Full-Union_ALCHOI(D) (37411 logical axioms,
1IMB file), which cannot be processed by HermiT">. For this ontology, our predic-
tion module was timing out and we found out that calculating the metrics for such an
ontology was quite expensive sometimes (they are quadratic in the size of the under-
lying graph), but we opted to leave their optimisation as future work. This said, we
directly reduced the size of the ontology to a 25% percent of the original logical ax-
ioms'®. With this setup, our approach, using Liver and hasLocation as signature, is
able to extract a subontology where asking for hasLocation some Liver retrieves 9
classified concepts, among which we can find Hepatitts, HepaticNecrosis and
FattyLiver. Note that those are not directly related to Liver by hasLocation but by
hasSpecificLocation, its subproperty. Extracting a subontology in this case is not
only about performance, but a matter of enabling the application to work (approximat-

ing the reasoning).

In both real-world examples, the original ontologies could not be processed by a
regular desktop computer. However, our prototype was able to compute a subontology
so that the original problem can be partially solved, even when some inferences are

missing.

7. Conclusions and Future Work

In this paper, we have discussed and developed strategies to adapt ontology reason-
ing to the limitations of the device where such a reasoning will take place, particularly
in the case of devices with heavily constrained resources, such as mobile devices or

ToT infrastructure.

151 fact, we have used different versions of HermiT and Pellet to handle it, but the original one could not

be processed.
16We tested it with 25% and 12.5% with exactly the same results of the reasoning, but higher materialisa-

tion times for 12.5%.
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We have proposed an architecture to perform adaptive reasoning, taking into ac-
count several criteria (such as the maximum running time or memory/battery limits).
The key idea is to perform a knowledge extraction step that is suitable for the device,
possibly after several iterations of the process. Reasoning will thus be executed against
a subontology that can be processed on the device, although, in general, the reasoning
results would be incomplete. We have discussed several issues to be taken into account
during the process, such as the use of a signature (possibly including automatically
discovered key concepts) as a starting point, or a preservation language as a strategy to
decide which axioms to be kept. We have also discussed how to measure the impact
of our approximations. In particular, we proposed a novel definition of semantic loss,
adapted from the ontology alignment field.

To illustrate some important steps of our architecture, we have implemented a pro-
totype that is able to compute subontologies on desktop computers according to the
predicted values of a single criterion (the reasoning time), which obviously depends on
the device resources. The prototype illustrates the joint use of feature selection, strate-
gies to compute a signature (KCE), and modularisation to give a possibly incomplete
answer to the ontology materialisation problem with limited resources.

We think that this paper clearly shows the potential of this line of research but also
that there is a long road ahead, and there exist many directions for our future research.
More experiments on mobile devices (or other devices with constrained resources) will
also be necessary to properly evaluate the feasibility of the approach. In particular,
although considering as many possible criteria as possible is desirable, first it has to be
confirmed empirically that their costs can be successfully predicted.

To do so, our prototype could be extended in several ways. Firstly, using more com-
plex (but efficient) prediction strategies, possibly including features selected for mobile
devices, and different machine learning techniques. Secondly, to compute the signature
locally, we need a more efficient implementation of KCE or another algorithm. Thirdly,
our prototype could be generalised to decide whether to perform local reasoning or not.
Last but not least, we would like to test the pipeline on resource-constrained devices
such as mobile phones. However, to do so, it is firstly necessary to develop models to

predict the ontology reasoning time, which so far has only considered desktop comput-
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