
Praedixi, Redegi, Cogitavi: Adaptive Knowledge for
Resource-aware Semantic Reasoning

Carlos Bobeda,b, Fernando Bobilloa,b, Ernesto Jiménez-Ruizc,d, Eduardo Menaa,b, Jeff

Z. Pane

aUniversity of Zaragoza, Zaragoza, Spain
bAragon Institute of Engineering Research (I3A), Zaragoza, Spain

cCity, University of London, London, UK
dUniversity of Oslo, Oslo, Norway

eUniversity of Edinburgh, Edinburgh, UK

Abstract

Representing knowledge with ontologies and performing reasoning with semantic

reasoners is important in many intelligent applications. However, existing reasoners do

not take into account the available resources of the device where they run, which can be

important in many scenarios such as reasoning with very large ontologies or reasoning

on resource-constrained mobile devices.

In this paper, we propose a novel approach to adapt the size of knowledge managed

by applications, taking into account several criteria about resources available (such as

time, memory, and battery consumption), at the same time. Thus, rather than giving no

answer due to the lack of resources needed to deal with a full ontology, we propose a

novel architecture to compute a subontology to provide an incomplete answer at least.

Our approach makes use of existing approaches to predict the performance of semantic

reasoners and to compute ontology modularisation and ontology partition, but taking

into account the associated resource consumption. We also propose a novel measure

to estimate the semantic loss when replacing the original ontology by a subontology.

Finally, we present an implementation and evaluation of the whole pipeline, showing

that the semantic loss incurred in the process is acceptable.

Email addresses: cbobed@unizar.es (Carlos Bobed), fbobillo@unizar.es (Fernando Bobillo),
ernesto.jimenez-ruiz@city.ac.uk (Ernesto Jiménez-Ruiz), emena@unizar.es (Eduardo Mena),
http://knowledge-representation.org/j.z.pan/ (Jeff Z. Pan)

c© 2024. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://

creativecommons.org/licenses/by-nc-nd/4.0/

Preprint submitted to Expert Systems with Applications September 24, 2025

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Keywords: Ontology reasoning, Semantic reasoning, Resource-constrained devices,

Ontology modularisation

1. Introduction1

One of the key reasons behind the success of intelligent applications is the ex-2

ploitation of knowledge. From old knowledge-based systems or expert systems, it3

has been clear that knowledge representation is a crucial task. Modern intelligent ap-4

plications usually represent the relevant explicit knowledge using ontologies (see for5

example (Allemang et al., 2020)), which are formal and shared specifications of the vo-6

cabulary of a domain of interest. Ontologies are usually formalised using Description7

Logics (DLs) (Baader et al., 2003), which have many advantages, including the possi-8

bility of using semantic reasoners (Khamparia and Pandey, 2017) to answer questions9

regarding an ontology, compute new knowledge which is not implicitly represented10

in the ontology, etc. Ontology reasoners solve one or several reasoning tasks. Popu-11

lar reasoning tasks include consistency checking (verifying that an ontology does not12

have logical contradictions), instance retrieval (computing all the instances of a given13

concept), classification (computing a concept hierarchy and a property hierarchy based14

on the subsumption relationships), and ontology materialisation (precomputing some15

inferences, such as indirect subclass axioms).16

Unfortunately, the algorithms currently implemented by the semantic reasoners do17

not take into account the resources available for the running environment. Let us dis-18

cuss some examples where resources are important:19

• Reasoners do not take into account the memory of computers where they are20

executed: if the input ontology is very large, the reasoner might abort its execu-21

tion returning an “out of memory error” and therefore the user would not receive22

any answer. For example, let us consider GALEN medical ontology, which has23

been used as a reference terminology for surgical procedures in France, for oral24

hygienists and dietitians in the Netherlands, and for drugs in the UK (Rogers25

et al., 2001). When trying to reason with the 20.1 MB GALEN on a desktop26

computer with an Intel Core i7-6700K@4.00 GHz CPU and 24GB of RAM,27

2

HermiT (Glimm et al., 2014) reasoner did not finish in 400 s and, after extending28

the timeout to 3600 s, it ran out of memory. Indeed, in order to support GALEN,29

people had to manually identify, extract, and use fragments of the ontology. Over30

the years, different authors identified different fragments of the ontology, with31

different expressivities and sizes, suitable for their particular hardware resources32

and information needs. Ideally, such a process should be automatised and gener-33

alised so that it can adapt to the user device resources.34

MMD ontology, used at Aibel company (Norway), is another example where35

modularisation is critical to perform efficient reasoning (Skjæveland et al., 2012).36

In fact, requirements and specifications are represented using generic ontologies,37

ontologies describing generic concepts in the engineering domain, and domain38

ontologies. However, existing modules cannot be dynamically adapted to the39

user device resources.40

• In ontology visualisation (which requires using a reasoner to deal with the im-41

plicit knowledge) (Dudáš et al., 2018), the ontology could be too large to be42

displayed completely, so it is a good idea to take hardware resources and user43

preferences into account. On the one hand, ontology visualisation tools should44

adapt to the running environment, taking into account, for example, the size of45

the screen. On the other hand, even if the ontology has a large number of nodes,46

it is not necessary to display all of them (no user will be able to see the details of47

thousands of nodes at the same time) but rather limit itself to showing a subset48

of nodes that are interesting for the user or the most relevant concepts to get a49

global view.50

• Mobile devices typically have limited resources (at least when compared to desk-51

top/server counterparts) in terms of CPU processing, available memory, remain-52

ing battery charge, and connectivity (wireless communications are, in general,53

less reliable than wired ones). This also applies to the Internet of Things (IoT),54

where the devices deployed to perform so called edge-computing would be also55

limited by their hardware resources. For example, let us consider an emergency-56

assistance app for mobile devices, such as the one implemented in the SHER-57

3

LOCK system (Yus and Mena, 2015). In order to assist the health staff to find58

a proper treatment for a particular patient, it should be able to avoid medication59

errors by automatically checking that there is no incompatibility between the60

medicines and the allergies of the patient (according to the knowledge in a cer-61

tain ontology). Being able to reason locally on such devices is important when62

connectivity is not guaranteed (Huitzil et al., 2020). This is the case not only for63

smartphones, but also tablets, laptops, wearable devices, etc. However, due to64

its limited resources, significantly fewer reasoning tasks are completed on a mo-65

bile device than on a desktop computer, as illustrated in the example in Figure 1,66

adapted from (Bobed et al., 2015), where in 61 out of the 572 evaluated tasks,67

the reasoning did not end successfully on the mobile device. Another example is68

the beer recommender system GimmeHop, that required to compute manually a69

fragment of the ontology to reason on a local mobile device (Huitzil et al., 2020).70

Figure 1: Difference in the number of tasks that finished on a desktop computer but did not finish on an

Android device, for different reasoners and ontology sizes: S(mall, <500 axiomas), M(edium, [500,5000)

axiomas) and L(arge, ≥5000 axioms).

We claim that an intelligent application cannot really be called “intelligent” if it71

does not work when available resources are not optimal. For example, coming back to72

4

our emergency-assistance app, it should not assume that a stable wireless connection73

will always exist in a remote mountainous area or inside a tunnel: in such critical74

cases, the application should implement strategies to guarantee that there will be an75

acceptable behaviour, such as working with the local knowledge, finding alternative76

ways to communicate (e.g., an ad-hoc network), etc.77

Current ontology tools, such as semantic reasoners (e.g., Pellet (Sirin et al., 2007),78

HermiT (Glimm et al., 2014), TwOWL (Thomas et al., 2010), or MORe (Armas-79

Romero et al., 2012)) or ontology editors (e.g., Protégé (Musen, 2015)) start to solve a80

reasoning task without taking into account whether they will finish such a task or not.81

If reasoning cannot be finished under the existing resources, current tools just abort82

their execution and throw an exception (typically, “out of memory” error).83

A first solution would be to adapt existing reasoning algorithms to different re-84

source limitations, but this is complex as resource management is heterogeneous and85

can be contradictory; e.g., to minimise reasoning time, semantic reasoners typically86

use auxiliary data structures, which increases the memory use.87

In this paper, instead, we propose a novel approach to promote resource-aware se-88

mantic reasoning, deciding at run-time how much knowledge can be processed by the89

device. As a consequence, it will improve the semantic capabilities of resource-limited90

devices. In particular, we will mainly focus on adapting the available knowledge to91

a size that a device is able to handle, to avoid aborting reasoning tasks due to a lack92

of resources. Ideally, one would like to take into account all the available knowledge,93

but limited capabilities might force us to restrict to a (as large as possible) subset. Fur-94

thermore, our approach will make it possible for applications to detail the percentage of95

knowledge that is being handled and to explain to the user that the answer of the reason-96

ing is incomplete and its estimated loss of information. To do so, we propose (i) to first97

estimate the needed resources for a given reasoning task on a given ontology, building98

on previous approaches to predict the resource consumption of DL reasoners (Guclu99

et al., 2016b; Kang et al., 2012; Pan et al., 2018), (ii) if needed, considering to the100

specified limitations for the device, to compute a subset of knowledge to work with,101

and (iii) to run a semantic reasoner to solve the given reasoning task on the (computed102

5

sub)set of knowledge1.103

This context leads to two important research questions:104

1. On the one hand, which size of knowledge are we able to manage in a given105

device? As the resources of the devices are fixed, we turned our attention to the106

knowledge to be processed, which can be selected somehow.107

2. On the other hand, even if we had a general framework to predict the cost in108

terms of different criteria, how do we measure the consequences of dealing with109

a subset of available knowledge only? In particular, given an ontology and an110

extracted subontology, is it possible to measure, for a given reasoning task, the111

semantic loss we will incur when working only with the latter one? As we will112

discuss in Section 2.3, existing approaches are not directly applicable.113

The main contributions of this paper are the following ones:114

• We firstly propose a general architecture based on a combination of ontology115

modularisation strategies (Del Vescovo et al., 2013) and prediction of the cost of116

a given reasoning task.117

• Then, for the sake of concrete illustration, we implement a prototype which fo-118

cuses on a single resource: it adapts the reasoning to the specified maximum119

running time, using a particular choice of prediction and modularisation tech-120

niques.121

• We propose and evaluate a measure to estimate the semantic loss incurred, given122

that our proposal advocate working with subontologies instead of full (but un-123

manageable) ontologies.124

• We empirically demonstrate the feasibility of our approach by studying the ac-125

curacy of the prediction when computing the adapted subontologies and the es-126

timated semantic loss.127

1In Latin, “Praedixi, Redegi, Cogitavi” means “I predicted, I reduced, I reasoned.”

6

The rest of the paper is organised as follows. First, in Section 2 we present an128

overview of the related work. Section 3 describes the proposed architecture, and its129

possible use in a mobile computing scenario. Section 4 presents some possible knowl-130

edge extraction strategies, implemented in a prototype. Then, Section 5 presents our131

proposal to measure the semantic loss of a module. In Section 6, we perform an exper-132

imental evaluation of our prototype. Finally, we draw some conclusions and present133

the future work in Section 7.134

2. Related Work135

In this section we will overview some related work on computing ontology subsets136

(Section 2.1), adapting ontology reasoning to the resources (Section 2.2), and measur-137

ing semantic loss (Section 2.3). Finally, we identify some open issues (Section 2.4).138

2.1. Computing ontology subsets139

Several years ago Stuckenschmidt and Klein asserted that the realisation of the Se-140

mantic Web depended on the ability to reuse ontologies (Stuckenschmidt and Klein,141

2004). They proposed that problems arising from the monolithic nature and size of142

ontologies could be solved by an automatic partitioning mechanism. Ontology par-143

titioning consists of dividing an ontology into several subontologies such that every144

axiom of the original ontology belongs to exactly one subontology. However, auto-145

matic partitioning strategies so far do not take into account either the target environ-146

ment where the extracted knowledge is going to be deployed or the actual tasks such147

knowledge is going to be used for. For example, when dealing with SNOMED CT on-148

tology (BioPortal , 2023), automatic partitioning strategies, such as SWOOP (Cuenca149

Grau et al., 2006), or PATO (Schlicht and Stuckenschmidt, 2006), either produced one150

very big subontology (due to the inner links between concepts), or one subontology151

which takes into account parameters that were hardly related to the available resources152

of our devices, such as number of partitions. Other approaches, such as Prompt (Noy153

and Musen, 2004), rely on manual partitioning strategies which require some parame-154

ters (again not related to resource consumption) set by the user/developer such as depth155

of traversal, relationships to be included, and a starter concept.156

7

Apart from ontology partitioning, ontology modularisation consists of computing157

a subset of an original ontology such that the inferences related to some terms (a seed158

signature) are preserved. Some approaches have been proposed for which the ontol-159

ogy conforms an conservative extension for a given signature, such as (Armas-Romero160

et al., 2016; Cuenca Grau et al., 2008; Gatens et al., 2013; Konev et al., 2013). For ex-161

ample, syntactic locality-based module extraction (Cuenca Grau et al., 2008; Jiménez-162

Ruiz et al., 2008) proposes six different types of modules for an ontology with different163

assumptions and expectations from a module. A comparison of three logically sound164

notions of a module (i.e., MEX modules, semantic locality, and syntactic locality) con-165

cluded that syntactic locality, which is computationally cheaper to find, can be a good166

approximation of semantic locality, and that “in general there appears to be no or little167

difference between semantic and syntactic locality” (Del Vescovo et al., 2013). AMEX168

modules have been generated by implementing a depletion approach on acyclic ontolo-169

gies using provided signatures (Gatens et al., 2013). However, despite the benefits of170

their logical grounding, these approaches focus only on the logical properties that the171

logical modules must satisfy, but they do not consider the resource consumption.172

Using partitioning or modularisation techniques to obtain better performance re-173

sults can be seen in MORe (Armas-Romero et al., 2012), a meta-reasoner which tries174

to divide the ontology into different modules according to their expressivity and for-175

wards them to the appropriate underlying reasoner. For example, MORe would split a176

given ontology and use two reasoners, one efficient EL reasoner (i.e., ELK (Kazakov177

et al., 2014)) for processing axioms that have the expressivity of the OWL 2 EL profile178

in the fastest way possible, and a DL reasoner (e.g., HermiT (Glimm et al., 2014)) for179

processing axioms with higher expressivity. This approach, while similar to the nature180

of our proposal, does not take into account the available resources.181

2.2. Adapting to resources182

The mobile reasoner mTableaux implements a weighted partial matching approach183

that would terminate the process when it reaches a given RAM threshold, and would184

provide the results according to matching conditions provided by the user (Steller et al.,185

2009). However, why should we deplete all the device resources if we could just work186

8

with a specifically task-tailored piece of knowledge? This is specially more important187

in these scarce-resources scenarios, where we have to optimise everything as much188

as possible. Besides, this approach expects the user/developer to provide successful189

matching conditions and weights for matching conditions to give priority in their depth-190

first checking algorithm.191

In order to guide the extraction taking into account the resource consumption,192

we also need to be able to predict the resource consumption of reasoners. In this193

regard, there have been several different proposals mainly oriented to predict execu-194

tion times (Guclu et al., 2016a; Kang et al., 2012, 2014; Pan et al., 2018; Sazonau195

et al., 2014; Zhang et al., 2010) in desktop computers. Other works proposed differ-196

ent set of ontology metrics mainly at TBox reasoning level to predict the reasoning197

time using classification and regression models (Zhang et al., 2010; Kang et al., 2012,198

2014). (Pan et al., 2018) explored their capabilities when trying to predict reasoning199

times with big ABoxes, proposing an extension of the metrics which allowed to im-200

prove the time processing prediction. Instead of building global models such as these201

methods do, (Sazonau et al., 2014) proposed a local prediction method that involves202

selecting a suitable small subset of the ontology and use extrapolation to predict total203

time consumption of ontology reasoning using the data generated by the processing204

of such a small subset. We think that using both of them together will be a starting205

point to get enough information to guide the resource aware knowledge adaptation our206

proposal requires.207

Beyond the semantic reasoning application, (Hutter et al., 2014) showed that it208

is possible to predict the performance of algorithms for hard problems, in particular209

propositional satisfiability (SAT), travelling sales person (TSP), and mixed integer pro-210

gramming (MIP) problems. Prediction approaches based on random forests showed211

the best performance. Identifying metrics for the prediction is problem-dependent: the212

authors identified 138, 121, and 64 features for SAT, TSP, and MIP, respectively. The213

prediction of the performance of other discrete problems (such as the travelling thief214

problem, the quadratic assignment problem, or solving quantified Boolean formulae)215

but also continuous problems (in particular, both unconstrained and constrained single-216

objective optimisation problems) has also been investigated (Kerschke et al., 2019).217

9

Regarding reasoning specifically on mobile devices, reasoners can be native (Ruta218

et al., 2022, 2019; Steller et al., 2009; Van Woensel and Abidi, 2019) (implemented219

for a specific mobile device or an edge-computing device) or ported (to reuse existing220

semantic reasoners (Bobed et al., 2015)). (Bobed et al., 2015) adapted some existing221

reasoners to Android and presented a thorough evaluation of the time performance222

of DL reasoners, showing that it is feasible to use them up to “medium-size” ontolo-223

gies. While there have been some approaches that have adapted semantic reasoners to224

constrained-resource devices (Ruta et al., 2022, 2019; Steller et al., 2009; Van Woensel225

and Abidi, 2019); none of them is able to adapt the reasoning to the resources of a226

particular device. In particular, (Van Woensel and Abidi, 2019) proposes to optimise227

mobile reasoning by de-activating inference rules (for the OWL 2 RL profile) to de-228

crease the running time. However, specific resources are not taken into account, so229

it could de-activate more rules than needed, and even after de-activating some rules,230

the resource limit could still be reached. Furthermore, (Kleemann, 2006) discussed re-231

source restrictions (computing power, memory, and energy) from the point of view of232

reasoner development, but the implementation cannot adapt to the resources. Finally,233

it is worth to mention the only previous work predicting the resource consumption on234

mobile devices, which presented a battery consumption prediction module for Android235

devices (Guclu et al., 2016b).236

2.3. Semantic loss237

While there are some works that compute the semantic loss when a query expres-238

sion is rewritten, such as the OBSERVER system (Mena et al., 2001), computing the239

semantic loss when replacing an ontology with another one is not always considered.240

The main reason is that, as already mentioned, ontology modularisation computes a241

subset of an original ontology such that the inferences related to the seed signature are242

preserved, so there is no semantic loss (with respect to the seed signature).243

(Gobin-Rahimbux, 2022) overviews the metrics to evaluate ontology modules and244

classifies them into eight categories: naming convention, syntax, module character-245

isation and distribution, module structure, module richness, logical criteria, module246

relatedness, and module quality. Module quality includes precision and recall, but they247

10

are restricted to taxonomical relations (disregarding other axioms) and do not consider248

the consequences of the axioms.249

In the context of ontology alignment, (Euzenat, 2007) proposed the definitions of250

semantic precision and semantic recall. The idea is that the true and false positives251

do not only consider the explicit alignments but also their consequences (i.e., implicit252

alignments). In our scenario, semantic precision would be 1 by definition, as all the253

axioms in the subontology are part of the original ontology. However, we will consider254

a similar notion of semantic recall.255

While we are interested in computing the semantic loss between an original on-256

tology and a subontology, the notion of semantic difference is more general, as it is257

asymmetric and is thus concerned with both axioms that belong to O1 and not to O2,258

and axioms that belong to O2 and not to O1. Measures to compute the semantic dif-259

ference are also typically based on the percentage of consequences which change with260

respect to another ontology (Pernisch et al., 2021).261

2.4. Open issues262

Thus, after analysing the available approaches, we have identified two main points263

that hinder the adoption of semantic reasoning where resources are constrained:264

1. Lack of interaction and collaboration between reasoning and knowledge extrac-265

tion for a better optimisation of knowledge processing on resource constrained266

scenarios. The MORe approach indicates that it is promising to explore such a267

possible interaction for other purposes such as mobile devices.268

2. Lack of generalisation, because previous works on the subject are embedded in269

various research prototype implementations and cannot be easily generalised.270

For example, the weighted matching algorithm (Steller et al., 2009) is embedded271

in mTableaux DL reasoner and it would essentially require a complete reimple-272

mentation if it is expected to be used in an EL reasoner.273

We aim at proposing a flexible architecture that can adopt any particular reasoner274

and knowledge extraction technique. Furthermore, previous approaches to measure the275

semantic loss must be adapted to our framework.276

11

3. Adaptive Reasoning277

In this section, we firstly propose an architecture that evaluates whether a partic-278

ular device can process an ontology under some resource constraints, and, if it is not279

the case, adapts the reasoning task to support as much knowledge as possible. Then,280

we discuss strategies for the prediction of the resources consumption and a possible281

integration in a more general case, an intelligent framework selecting among local rea-282

soning, global reasoning, or a hybrid approach following (Bobed et al., 2017).283

3.1. Architecture of the Proposal284

Our resource-aware system is flexible and can receive a wide plethora of con-285

straints. For the sake of concrete illustrations, we will provide a non-exhaustive list286

of examples:287

• Hardware constraints such as CPU capacity, memory, battery consumption, con-288

nectivity and bandwidth, or screen size. In some cases, such as memory and289

battery, this includes not only the maximum value but also the available one.290

• User preferences, such as a maximum running time.291

• Non-functional properties, such as a required user privacy level.292

• Feedback from the system, such as a prediction of the cost to reason with the293

current subontology or the semantic loss with respect to the original one.294

• The input ontology (size, expressivity . . .) and the particular reasoning task, as295

they affect the cost of the reasoning.296

Figure 2 shows the main high-level components and steps of our architecture, which297

we are going to discuss in detail:298

1. First, the Constraint Evaluation Module receives the ontology and the constraints,299

and evaluates the constraints according to the features of the ontology and the re-300

sources of the device. If the ontology fulfils them, it is forwarded to the reasoner301

(step 4); otherwise, the ontology as well as the constraints are passed to the302

Knowledge Extraction Module.303

12

Figure 2: High-level architecture for the knowledge adaptor module.

2. The Knowledge Extraction Module tailors the knowledge according to the given304

constraints in an iterative way. In particular, it computes a subontology of the305

input ontology, taking into account the constraints, trying to keep the most impor-306

tant knowledge to solve the reasoning task, and trying to minimise the semantic307

loss. This flexible architecture will be instantiated on Section 4.308

3. Once extracted, the subontology is returned for its evaluation to the Constraint309

Evaluation Module. Therefore, we repeat the loop predict cost of the reason-310

ing - evaluate constraints - extract subontology - predict again as many times as311

needed, until obtaining a subontology which has been estimated to be manage-312

able by the semantic reasoner2.313

4. Finally, once the knowledge has been estimated to be manageable by the seman-314

tic reasoner, the execution of the reasoning task is performed over the original315

ontology or a subontology that meets all the constraints.316

The proposed architecture assumes that reasoning is performed locally on the user317

device. However, the resource-aware reasoning module could be integrated in a broader318

2If the subontology is finally empty (in fact, it would include at least the signature), it means that there

was no way to fulfil all the given constraints.

13

framework, where reasoning does not need to be performed locally. (Bobed et al.,319

2017) proposed three main strategies to be adopted in a mobile scenario, but they can320

actually be considered in any scenario with limited resources. Briefly, those strategies321

are:322

• Server-side External Reasoner: External powerful servers perform all the calcu-323

lations. However, the application might need to send a lot of data through the324

network, which can be a serious limitation in mobile computing environments,325

and user privacy can be compromised as the user’s data would be sent to an326

external server.327

• Device-side Local Reasoner: Calculations are computed on a local device, which328

is the best choice to keep privacy or when network communications are not re-329

liable. As limitations, reasoning becomes challenging in devices with limited330

resources. For instance, there is some evidence that reasoning in mobile devices331

might be affordable only for small or not very expressive ontologies when using332

ported reasoners (Bobed et al., 2015).333

• Hybrid-reasoning Approach: In this last strategy, some parts can be computed334

locally and others can be computed on an external server, depending on the re-335

source available in runtime.336

The objective would be to automatically determine which one is the best option to337

use a semantic reasoner. The optimal (or maybe Pareto-optimal) choice depends on the338

application or, more specifically, on several factors, and is left as future work.339

In the following, we detail an important part of our architecture: how resource340

consumption can be predicted.341

3.2. Predicting Resources Consumption342

To perform the resource consumption prediction, we could use a model to predict343

each single resource. One problem of this approach is that we do not have any feedback344

about which features might be interesting to modify in order to make the ontology fit345

in the device. This might lead to a blind search, having to apply different extraction346

14

heuristics in a blind way. However, the works (Ribeiro et al., 2016, 2018) suggest that347

we could obtain some explanations in the feature space which could be used to guide348

the extraction as well. Moreover, some works such as (Sazonau et al., 2014) suggest349

that some features are strongly correlated and could at least give us some clues about350

how to proceed (in that example, the number of axioms was one of the most relevant351

features to predict OWL 2 DL reasoning time)3.352

On the other hand, to be able to act on the source ontology and know which pa-353

rameters to focus on in order to meet the criteria, we considered having models that,354

given a (predicted) resource limit, return which feature/s should be modified and how355

to meet the criteria. We aimed at exploiting the strong correlations that exists between356

the number of axioms and the predicted values (Sazonau et al., 2014); however, the357

initial tests about the accuracy were not good, so further analysis using explainabil-358

ity techniques in the feature space must be carried out before considering this option.359

Thus, as a strategy to reduce the resource consumption, we have adopted an axiom size360

reduction heuristic, leaving the exploration of these techniques as future work.361

Besides, given the heterogeneity of the devices, we might need to train a model for362

each family of devices: the ontology features do only depend on the input ontology,363

but the actual resource consumption is dependent on the actual characteristics of the364

device, thus requiring a model for each group of them (trained once, and shared among365

all of them). In order to simplify the extraction of training data for new devices, it could366

be interesting to use Antutu (in mobile devices) or PassMark (in desktop computers)367

values to scale the values obtained for other devices. Note as well that the prediction368

depends on the concrete reasoning task, but this will be explained in detail in Section 4.369

We are aware that the resource-constrained device might have to reason with in-370

complete information (depending on the knowledge extraction technique used), but it371

is important to stress that, since semantic reasoners implement monotonic reasoning,372

the results would be correct always (although may be incomplete). This approximate373

3In order to show the feasibility of our approach, in the prototype described in Section 4, we adopted time

as our main limiting resource and use the already studied ontology features (Kang et al., 2012; Pan et al.,

2018) to predict the reasoning time.

15

reasoning is not the optimal option, but, when resources are not enough, it is prefer-374

able than providing no result at all. Furthermore, one of the novelties of our current375

proposal is how to measure the semantic loss incurred.376

4. Instantiating the Architecture377

In this section, we firstly analyse some strategies to instantiate the architecture pro-378

posed in the previous section (Section 4.1), and then report our prototype implementa-379

tion for a particular choice of those strategies (Section 4.2).380

4.1. Design of the Solution381

First of all, we have to note that it is not possible to apply directly “classical”382

modularisation or partitioning methods, as they do not take the resources into account.383

Moreover, in the previous section we have omitted the requested reasoning task384

(i.e., what is the knowledge being used for) on purpose. Indeed, the knowledge adap-385

tation module must take into account the nature of this target task. In fact, as we will386

see in the following, the nature of the target task will give us a starting point to guide387

the extraction.388

Figure 3 shows an instantiation of our proposal, highlighting the different works389

that could be applied to each stage. It takes as input an ontology, a list of the resource390

constraints, and the reasoning task that has to be performed. Note that the approach391

might take several iterations: if after computing a subset of the original ontology, the392

subset is still too big for the device resources, another round of knowledge extraction393

is performed. The main components are as follows:394

1. Resource Predictor Model/s: As discussed in Section 2, several metrics to pre-395

dict the reasoning time (on desktop computers) and the battery consumption (on396

mobile devices) have been proposed in the literature. These metrics can be con-397

sidered in our approach as a starting point, building a model for each of the398

resources that whose consumption we want to predict.399

2. Constraint Evaluation Module: The predictions obtained by the models for400

each resource would be taken into account in a multicriteria decision problem401

16

Figure 3: Possible implementation of the knowledge adaptor module.

deciding whether reasoning is feasible or not. In the latter case, it would be nec-402

essary to further reduce the amount of knowledge until it is feasible. In principle,403

the system could interpret all constraints in a conjunctive way and ensure that all404

of them are satisfied. However, more sophisticated solutions are possible: the405

user could define the most important constraints and the system could go on if406

some of the less important constraints are satisfied, there could be an interval of407

values (for example, for the maximum running time) rather than a strict value,408

etc.409

3. Knowledge Extractor: Its purpose is to compute a subontology of the input410

ontology according to the resource constraints and reasoning task. Firstly, it411

17

might invoke the Signature Obtainer, described below, to get a seed signature.412

Secondly, it invokes the Module Extractor and returns the computed subontology.413

At this point, the output ontology could be empty if all the constraints cannot be414

met given the available resources.415

4. Signature Obtainer: The reasoning task to solve might require a signature seed416

(i.e., a set of atomic concepts, individuals, object properties and datatype prop-417

erties to start with) or not. An example with signature is an instance retrieval418

query, where the user wants to retrieve books that have been written in English.419

The signature seed would be {Book,writtenIn, english}. An example without sig-420

nature is ontology graphical representation, where the user just wants to browse421

the available knowledge.422

To compute the subontology, there are several possible choices about which423

knowledge to keep and which to discard. If the task imposes a signature seed,424

then it should guide the extraction procedure. However, when the target task425

does not impose a signature or we cannot derive an useful signature from the426

context of the application, we have two options: trying to find a signature seed,427

or not using a signature seed. In this latter case, we can use different strategies428

such as the following ones (the list is by no means complete):429

• To restrict to some OWL 2 profile discarding the other axioms, or a less430

expressive DL language.431

• To approximate the ontology to some OWL 2 profile, e.g., as in the syntactic-432

based approximation of TrOWL.433

• To keep just the subclass taxonomy of the ontology.434

More generally, we could define our preservation language, defining the axioms435

and complex concepts to be kept. This is similar to the proposal of (Cuenca Grau436

et al., 2012). Although in their approach there is no control over the particular437

values of the ontological features we would like to change, we could act further438

in the extraction by limiting the applicability of different grammar rules (e.g.,439

limiting the depth of the parsing trees).440

18

If we consider it relevant, we can obtain a seed signature attending to general441

criteria (Signature Obtainer in Figure 3). For this purpose, we could apply, for442

example, the detection of Key Concepts proposed by (Peroni et al., 2008). These443

concepts would comprise the signature seed in the absence of such for the task.444

In fact, they could be added as metadata (OWL 2 annotation) in the ontology to445

compute them offline and just once, as it is an expensive task.446

5. Module Extractor: Apart from restricting the expressivity, if the target task pro-447

vides somehow a signature to exploit (or we have been able to define a relevant448

one), we can follow several strategies (again, we do not intend to be exhaustive):449

• Incremental approaches: given an initial signature seed, add more axioms450

corresponding to the seed signature. After that first step, one could also451

add axioms corresponding to the new signature introduced by the previous452

axioms.453

• Pruning approaches: given an initial ontology, remove axioms. Following454

the spirit of the extraction with no signature, a possible approach could455

be to limit the “locality” of the axioms up to a certain depth. This would456

imply to apply the syntactic rules for the acceptance of the different axioms457

in (Cuenca Grau et al., 2008) parameterised to limit the activations/depth458

to which a particular rule can be applied.459

• Hybrid approaches or variants of the above approaches.460

In the case of multiple criteria, it is necessary to decide an order for the criteria to461

be relaxed (for example, we could go first for the most restrictive constraint, but other462

strategies could be studied in the future).463

4.2. A Prototype Implementation464

As a first step towards our objectives, we have implemented a prototype to show465

the feasibility of the whole pipeline, with a specific choice of the multiple alternatives466

discussed in the previous section. Our prototype takes an input ontology and computes467

a subontology, considering a maximum reasoning time as the only limited resource, on468

a desktop computer. As we have seen in Section 2.2, there are only prediction models469

19

for the reasoning time on desktop computers and for battery consumption on mobile470

devices. We advocate building our prototype for desktop computers because reasoning471

on mobile devices is limited to small and medium ontologies (Bobed et al., 2015), so it472

is not possible to process a meaningful benchmark. The only supported reasoning task473

is ontology materialisation using the OWLAPI (method precomputeInferences).474

The prototype uses OWLAPI 3.5.74(Horridge and Bechhofer, 2011) as program-475

ming API and is able to use any semantic reasoner implementing the OWLReasoner476

interface. In particular, we used HermiT 1.3.8 (Glimm et al., 2014) to gather the data477

for training the models and to perform all the materialisations required. The reason478

is that HermiT has already been successfully used to predict the reasoning time (Pan479

et al., 2018).480

Definition 1. Let O be an ontology. The materialisation of O, denoted mat(O), is the481

set of consequences that can be derived from O by using the types of InferredAxiom-482

Generator supported in OWLAPI 3.5.75, namely483

• InferredClassAssertionAxiomGenerator,484

• InferredDataPropertyCharacteristicAxiomGenerator,485

• InferredDisjointClassesAxiomGenerator,486

• InferredEquivalentClassAxiomGenerator,487

• InferredEquivalentDataPropertiesAxiomGenerator,488

• InferredEquivalentObjectPropertyAxiomGenerator,489

• InferredInverseObjectPropertiesAxiomGenerator,490

• InferredObjectPropertyCharacteristicAxiomGenerator,491

4We kept this version as the original prediction features(Kang et al., 2012; Pan et al., 2018) were devel-

oped with such one.
5https://javadoc.io/doc/net.sourceforge.owlapi/owlapi-distribution/3.5.7/

index.html

20

https://javadoc.io/doc/net.sourceforge.owlapi/owlapi-distribution/3.5.7/index.html
https://javadoc.io/doc/net.sourceforge.owlapi/owlapi-distribution/3.5.7/index.html

• InferredPropertyAssertionGenerator,492

• InferredSubClassAxiomGenerator,493

• InferredSubDataPropertyAxiomGenerator, and494

• InferredSubObjectPropertyAxiomGenerator.495

In the following, we will discuss each step of the prototype in detail.496

Resource Predictor Model. In order to train the model, we used the whole set of497

metrics used in (Pan et al., 2018) to predict the reasoning time, which included the498

metrics proposed by (Kang et al., 2012). The models have been trained using scikit-499

learn 1.2, which allows to export the models to PMML (Predictive Model Markup500

Language) (Guazzelli et al., 2009) to import them afterwards in other applications.501

The values of those metrics only depend on the input ontology and not on the de-502

vice. Therefore, in order to train several devices, such values can be computed just503

once, and possibly on a faster external server. However, recall that each family of de-504

vices will require to have their own prediction model. Besides, when actually using505

the system, it is important that those metrics can be efficiently computed on a limited-506

resource device or, alternatively, we can assume that the input ontology has been an-507

notated with them (as this is not standard) or the existence of an external service to508

compute them (as we will need to assume that there is some connectivity).509

Constraint Evaluation Module. As above mentioned, our current implementation is510

focused on time as resource. This module uses the model trained to predict the time511

and decide, given a timeout, between whether the criteria is met or not, and if not,512

whether there are more actions (i.e., reduce the size of the ontology) that we can apply513

to try to meet the requirements.514

As reduction criteria, we currently reduce the number of axioms by a 25%6 at each515

prediction step iteratively until the criteria is predicted to be met (i.e,. we repeat the516

6As we will see in Example 2, we also tried a 12.5% reduction with GALEN-Full-Union ALCHOI(D)

ontology and obtained the same results of the reasoning, but higher materialisation times.

21

loop predict - evaluate constraints - extract knowledge - predict again as many times517

as needed).518

Signature Obtainer. We have integrated Key Concept Extraction (KCE) technique (Per-519

oni et al., 2008) to find the top most important k concepts. To compute them, we520

adapted the implementation provided by (Peroni et al., 2008): when KCE API retrieved521

more than the demanded k concepts, we just selected the first k ones, as they are equally522

important (according to our own source code inspection). The value k could depend on523

the available resources.524

We noticed that KCE implementation is not efficient enough, and it usually does525

not finish on an average mobile device with medium-size ontologies. Therefore, we526

assume that KCEs have been computed offline (for example, on a desktop computer or527

a remote server) and that they are represented as metadata attached to the ontology via528

an OWL 2 annotation property keyConcepts.529

Module Extractor. The extraction technique we have implemented to compute the sub-530

ontology while having control over its size proceeds as follows:531

1. Starting from the given signature, it extracts all the subclass hierarchical infor-532

mation of its entities, obtaining a minimal skeleton7. That, it assumes a preser-533

vation language built using axioms of type A SubclassOf B, with A and B being534

atomic concepts. Then, it updates the signature with all the terms included in the535

skeleton.536

2. It iteratively adds logical axioms related to the updated signature, expanding the537

covered part of the original ontology in a breadth-first way, until reaching the538

maximum number of axioms computed by the Constraint evaluation module.539

Those logical axioms can be OWL 2 axioms of any type. In each step, the540

signature is also updated and expanded with the newly added terms.541

While pretty straight-forward, this approach allows us to reduce the size of the on-542

tology while keeping the information that we have deemed important. In fact, keeping543

7This skeleton can also be built in an incremental way to avoid running out of resources

22

the hierarchical skeleton could be substituted by any conservation language.544

Note that, as we reduce knowledge in an iterative way, we cannot recover knowl-545

edge discarded in previous iterations. Therefore, knowledge extraction should not be546

too aggressive in discarding axioms, as a more conservative extraction could be re-547

fined in next iterations. An alternative strategy could be, for example, if the computed548

subontology is not satisfactory, to find a subset of the signature which tries to max-549

imise the amount of knowledge that the module extracts and which is still within the550

limits. After that, we could add progressively the information available in the module551

obtained: 1) adding more axioms corresponding to the seed signature, or 2) adding ax-552

ioms not corresponding to the seed signature. However, we consider the exploration of553

the different strategies as future work.554

5. Measuring the Semantic Loss555

Apart from leading to a lower resource consumption (due to the simplification and556

reduction of the size of the processed ontologies), these potential approximations will557

have an associated semantic loss which has to be measured (and possibly be predicted)558

to be part of the decision process and to provide users with a confidence degree on the559

system answer.560

We advocate to adapt the notion of semantic recall proposed by Euzenat (Euzenat,561

2007) in the context of ontology alignment.562

Definition 2. Given an ontology O, let Cons(O) be the set of consequences that follow563

from O.564

The syntactic recall is defined as the proportion of axioms that had been extracted565

from the original ontology.566

Definition 3. Let two ontologies O and O′, where O′ is the result of any extraction

process over O (i.e., O′ ⊆ O syntactically). The syntactic recall of O′ w.r.t. O is given

by:

S ynRecall(O′,O) =
|O′|

|O|

23

While syntactic recall compares original axioms, semantic recall compares conse-567

quences.568

Definition 4. Let two ontologies O and O′, where O′ is the result of any extraction

process over O (i.e., O′ ⊆ O syntactically). The theoretic semantic recall of O′ w.r.t. O

is given by:

S emRecallT (O′,O) =
|Cons(O′)|
|Cons(O)|

Potentially, Cons(O) and Cons(O′) can be infinite, so we have to restrict it to the569

set of axioms that we can materialise from the extracted module:570

Definition 5. Let O and O′ be two ontologies, where O′ is the result of any extraction

process over O (i.e., O′ ⊆ O syntactically). The practical semantic recall of O′ w.r.t. O

is given by:

S emRecall(O′,O) =
|mat(O′)|
|mat(O)|

where mat(O) ⊆ Cons(O) is the ontology containing all the axioms that can be materi-571

alised by a reasoner from O.572

The definition of the ontology that can be materialised by a reasoner from an in-573

put ontology mat(O) could be defined in many different ways, depending on the axiom574

types that the reasoner takes into account. In this paper, we use the strategy imple-575

mented in our prototype, presented in Definition 1.576

Note that, following Definition 5, we can work with different versions of the ontolo-577

gies. In particular, we could choose to work under different materialisation regimes,578

where we could choose to have different kinds of inferences materialised in order to579

improve the semantic loss analysis8.580

Depending on the particular task, it can be convenient to extend further the defini-581

tion to take the signature of the extracted subontology into account:582

Definition 6. Let O and O′ be two ontologies, where O′ is the result of any extraction583

process over O (i.e., O′ ⊆ O syntactically). The signature-aware practical semantic584

8Of course, this requires the cost of materialising the different ontologies, so it has to be defined carefully.

24

recall of O′ w.r.t. O is given by:585

S emRecallS IG(O′,O) =
mat(O′)

restrictS ig(mat(O), S ig(O′))

where restrictS ig(O, S) is the set of axioms in O which refer to any element in the586

signature S , and S ig(O′) is the signature of O′.587

The signature of the extracted ontology must not be confused with the seed signa-588

ture of the subontology, i.e., the signature used as starting point for the subontology589

extraction. This leads, for the sake of completeness, to define the generalisation of the590

definition to work with any particular signature externally defined:591

Definition 7. Let O and O′ be two ontologies, where O′ is the result of any extraction592

process over O (i.e., O′ ⊆ O syntactically). The externally defined signature-aware593

practical semantic recall of O′ w.r.t. O is given by:594

S emRecallE
S IG(O′,O, S) =

restrictS ig(mat(O′), S)
restrictS ig(mat(O), S))

It follows that S emRecallS IG(O′,O) = S emRecallE
S IG(O′,O, S ig(O′)).595

Finally, note that we could use the above definitions to compare two different sub-596

ontologies O′ and O′′ extracted from the same original ontology O by relaxing the597

condition of syntactical inclusion (as they might extract different parts of the original598

ontology). In this case, the precision would be always 1, as all the axioms comes from599

the same source, but we would be calculating the Syntactic and Semantic Overlap:600

Definition 8. Let two ontologies O′ and O′′, where both O′ and O′′ are the result of

any extraction process over O (i.e., O′ ⊆ O and O′′ ⊆ O syntactically). The syntactic

overlap of O′ and O′′ is given by:

S ynOverlap(O′,O′′) =
|O′ ∩ O′′|

|O′ ∪ O′′|

Definition 9. Let two ontologies O′ and O′′, where both O′ and O′′ are the result of

any extraction process over O (i.e., O′ ⊆ O and O′′ ⊆ O syntactically). The semantic

overlap of O′ and O′′ is given by:

S emOverlap(O′,O′′) =
|mat(O′) ∩ mat(O′′)|
|mat(O′) ∪ mat(O′′)|

25

Note that we have considered the semantic loss between a pair of ontologies, but601

one could also define semantic loss for specific reasoning tasks.602

In the following section, we will apply these measures in order to evaluate how603

our initial implementation of the pipeline behaves in terms of semantic loss. As a604

baseline, we will consider the syntactic recall and the relaxed definitions (Overlaps)605

in order to evaluate our proposed technique to a safe-module extraction one (locality-606

based modularisation (Cuenca Grau et al., 2008)).607

6. Evaluation608

In order to show the feasibility of our approach, we have focused our experiments609

on several particular aspects: 1) we first test how accurate the prediction of the exe-610

cution time was with our dataset (Section 6.1), 2) then, we evaluate how such accu-611

racy affects our approach regarding materialising ontologies within a restricted timeout612

(Section 6.2), 3) we evaluate the extraction technique regarding the semantic loss in-613

curred when compared to the original ontologies and safe-modules (Section 6.3), and614

4) we discuss some detailed examples involving particular ontologies (Section 6.4).615

Experimental Setup. For the experiments, we used the ORE 2015 dataset (Parsia et al.,616

2016), composed of 16,555 independent ontologies (many of them, real ontologies).617

The dataset was developed by independent researchers and was not designed for this618

task, so there is not any bias. We adopted Random Forests as a machine learning model,619

using 500 trees as hyperparameter. We explored other models such as Multilayer Per-620

ceptron and Linear Regression, but Random Forests were the best ones out of the shelf621

providing results that were good enough for our purposes, and we chose them for the622

sake of simplicity. (Hutter et al., 2014) also found that random forest models showed623

the best results to predict the performance of some algorithms to solve combinatorial624

problems (SAT, TSP, and MIP). We used Hermit 1.3.8 as reasoner and established a625

maximum timeout of 300 seconds for materialising the ontologies. Figure 4 shows the626

distribution of the execution times for the ontologies that were materialised under such627

a timeout: around 95% of ontologies are materialised before 100 seconds, around 98%628

before 200 seconds. The reasoning task to solve was to compute all the inferences629

26

available using the OWLAPI (we materialised all the inferences OWLAPI allows for,630

adding all the axioms to both the TBox and ABox). Finally, all the experiments were631

run on a desktop computer with an Intel Core i7-6700K processor (4 cores, 8 threads,632

although no parallelism was applied) at 4.00 GHz and 32 GB of RAM memory.633

Figure 4: Distribution of ontology materialisation time. Axis-x shows materialisation time intervals, in sec-

onds. Axis-y shows number of ontologies analysed (left) and percentage of materialised ontologies (right).

Our extraction method provides us with the capability of establishing a size for634

the module in number of axioms, but we needed to assess its semantic conserva-635

tion capabilities. Thus, as a baseline to compare it in the semantic loss experiments,636

we have considered locality-based modularisation, using the Locality Module Extrac-637

tor (Cuenca Grau et al., 2008)9, which also has a Protégé plug-in called ProSÉ (Jiménez-638

Ruiz et al., 2008): Starting from a signature, we extract the Upper Modules (UMs) from639

⊥-locality (as suggested for the authors to reuse terminologies). Because UMs does not640

take into account the device resources, we needed to fix the number of axioms consid-641

ered for the sake of comparability: the number of axioms to be extracted by our method642

is given by the size of the correspondent UM module, and we set k ∈ {5, 10, 15, 20}.643

9http://www.cs.ox.ac.uk/isg/tools/ModuleExtractor

27

6.1. Precision of the Resource Prediction644

First of all, we double checked that the 143 ontology features proposed in (Kang645

et al., 2012) and (Pan et al., 2018) were appropriate for our purposes. For this, we646

first materialised the whole dataset. Establishing the timeout of 300 s, we managed to647

obtain the materialisation time for 10,932 ontologies.648

With such data, we adopted a 10-fold cross-validation approach and two setups:649

1) using just the data (ontological features + materialisation time) for the ontologies650

materialised to train the models, and 2) augmenting the data with subontologies ob-651

tained from the original ontologies and materialised under the same conditions (i.e.,652

the training test contains the original ontologies plus a set of subontologies). The ra-653

tionale was to check whether giving further insight about intermediate points for the654

ontologies provided the models with relevant information, as suggested in (Sazonau655

et al., 2014). In particular, the data augmentation was carried out using the locality-656

based modularisation (UM) and our extraction method with 5, 10, 15 and 20 concepts657

as signature (obtained with KCE).658

Table 1 shows the R2 score, MAE (Mean Average Error), and RMSE (Root Mean659

Square Error) obtained for both setups. Split size states the training and the test sizes660

for each case. Recall that R2 ∈ [0, 1], whereas MAE and RMSE are measured in661

seconds.662

Original data Augmented data

Split size 9839/1093 86113/9575

R2 0.904 0.848

MAE 3.118 0.801

RMSE 12.690 6.709

Table 1: R2, MAE and RMSE values for both setups using Random Forests with 500 trees. The splits for

CV including the modules were done splitting the ontologies and then selecting the modules to avoid data

leaking.

We can see that the high R2 values show that the features used are informative663

28

enough to predict the time for materialisation10. Observe that although augmented data664

have a smaller R2 score, MAE and RMSE values suggest that the model trained on this665

dataset is more accurate. However, given that the data augmentation technique might666

be computationally expensive, we will use original data to avoid such a cost. The errors667

for the original data are low as well, and we will check that their precision is enough668

for our purposes in the next section.669

6.2. Adjusting the Available Knowledge to the Resources670

We now turn our attention to whether the previous precision is good enough for671

our proposal. In this case, we use the model trained with just the ontologies (modules672

are not used), and fix the signature size to 10 concepts (the most important concepts673

according to KCE signature extraction) and a timeout of 10 seconds (which seems a674

reasonable time for a final user to wait). We split the results into two different sets:675

the 10876 ontologies that were materialised within the 300 s timeout (those used in676

the previous section), and the 5,679 other ones which were not handled within such a677

timeout.678

Table 2 shows two confusion matrices for the ontologies within the timeout. The679

left matrix shows the contrast between the predicted time and the real one for the orig-680

inal ontologies. In this matrix, the worst situation would be the false positives (41681

ontologies were predicted to be under the 10 seconds limit, but actually required more682

time, which is a 0.38% of the whole dataset). The right matrix shows the results after683

iterating to reduce the size of the ontologies, as explained in Section 4.2 (i.e., reducing684

iteratively the size of the ontology a 25% at each step, until the prediction consumption685

met the criteria).686

We can see how, for the final results (after having predicted and extracted the mod-687

ules), summing up the “≤ 10” column of the right matrix, we would have 10,654688

ontologies which we estimated that will be processed under 10 seconds (97.9% of the689

10As already mentioned, we explored as well the possibility of training a model to predict the number of

axioms, but it was not accurate enough to do the way back for the prediction and the iterative approach was

deemed to be more suitable for showing the feasibility of the approach.

29

Real Time

≤ 10 > 10
Pr

ed
ic

te
d

Ti
m

e

≤ 10
8943

(82.23%)

41

(0.38%)

> 10
308

(2.83%)

1584

(14.46%)

(a) Predicted Time: Initial prediction

Final Time

≤ 10 > 10

≤ 10
8969

(82.47%)

15

(0.14%)

> 10
1685

(15.49%)

207

(1.90%)

(b) Predicted Time: Final results

Table 2: Confusion matrices for the 10,876 ontologies that were materialised within the timeout of 300 s.

set of materialised ontologies). Note that this success ratio includes both the ontologies690

predicted correctly from the beginning (8969), and those processed and which ended691

taking less than 10 s (1685).692

For the ontologies that were not processed within 300 s (5,679 ontologies, 34.30%693

of the dataset), we checked how many were predicted to be out of the 300 s timeout694

and of our 10 s limit. None was predicted to be above the 300 s timeout, showing a695

limitation of our selected machine learning model (we leave the use of better generalis-696

ing models as future work). On the other hand, 899 ontologies (5.43%) were predicted697

to be within the 10 s. limit which was obviously wrong, but curiously they all were698

ontologies that HermiT could not process11. Nevertheless, assuming that all of them699

were above the 10 s timeout, we managed to reduce and process 3,465 (20.93%) out of700

4,490 ontologies (27.12%) with our approach within the established time out (the rest701

of the ontologies, 1,189 (7.18%), were not handled by that version of HermiT).702

6.3. Evaluation of the Semantic Loss703

Once we tested the feasibility of the knowledge extraction pipeline, we focused on704

measuring the semantic loss of: 1) our extraction technique when compared to logic-705

based module techniques, and 2) the actual application of our pipeline when compared706

to using the full ontologies.707

11Mainly due to inconsistencies, malformed literals, and unsupported characteristics.

30

Comparison to Locality-based Modules708

As commented in the experimental setup, in order to check if our extraction method709

was good enough for our purposes, we compared the overlap of our extracted partitions710

to locality-based modularisation (Cuenca Grau et al., 2008) extracting the Upper Mod-711

ules (UM). In particular, out of the 16,555 ontologies, we were able to extract and712

materialise both modules (ours and UM) for 14,255 of them. Figure 5 shows the com-713

parison in terms of syntactic and semantic overlap as defined in Section 5. We add the714

reduction percentage as we noticed that, even though we established the size of UM715

modules as an upper bound for our extraction procedure, in general UM modules were716

still bigger than ours as ours exhausted the extraction earlier.717

Figure 5: Syntactic and semantic overlap between UM modules and ours, along with the relative size of our

modules (Reduction) compared to UM ones (our modules are about 10% smaller than UM ones). The X axis

depicts the size of the signature, and the results in the table are read as average (standard deviation).

We can see how the syntactic overlap increases as the signature does: bigger sig-718

natures lead to bigger UM modules, which in turn allows for bigger signatures and719

more choices for our extraction approach. However, note how the semantic overlap720

remains stable, implying that we keep important knowledge (in this case, the taxon-721

omy skeleton which we decided to include in our conservation language, is important722

for both extraction techniques). Moreover, we have to take into account as well that723

31

our modules are about a 10% smaller than UM ones, so it can be argued that we still724

have some room for adding more axioms we deem important, to increase the overlap725

without exceeding the upper bound number of axioms to be extracted.726

Comparison to the Original Ontologies727

In this case, we focus on the 1,892 ontologies that were predicted to be above728

the 10 s timeout as they were the ones subject to reduction. We established a com-729

bined timeout of 1,200 seconds for materialising both ontologies (the original and the730

extracted one), and calculating both syntactic and semantic recall values (which, fol-731

lowing the work by Euzenat et al. (Euzenat, 2007), required checking whether each732

axiom was inferred from the original ontology), which led to a final set of 1,360 anal-733

ysed ontologies.734

Figure 6: Syntactic and semantic recall between the original ontologies and our subontologies, along with

the relative size (Reduction): global recall without taking into account any signature.The results in the table

are read as average (standard deviation).

Figures 6– 8 show the syntactic and semantic recall for these ontologies calculated735

in three settings: a) globally (Definition 5) in Figure 6, b) restricted to the signature of736

the extracted subontologies (Definition 6) in Figure 7, and c) restricted to the original737

seed signature (Definition 7) in Figure 8. We show the total averaged values along with738

32

Figure 7: Syntactic and semantic recall between the original ontologies and our subontologies, along with

the relative size (Reduction): recall conditioned to the extended signature. The results in the table are read

as average (standard deviation).

Figure 8: Syntactic and semantic recall between the original ontologies and our subontologies, along with

the relative size (Reduction): recall conditioned to the initial signature. The results in the table are read as

average (standard deviation).

the standard deviations (between brackets, as well as the values aggregated regarding739

the size of the original ontologies, namely, small ontologies (#axioms ≤ 500), medium740

33

ones (500 < #axioms ≤ 5, 000), and large ones (#axioms > 5, 000)12.741

We can see how the results are stable across all the ontology sizes, and strongly742

correlated to the reduction achieved conditioned to the signature of the subontology13,743

but for the initial signature, which show that the main information about the initial744

signature is kept in our extracted subontology. When analysing the data clustered by745

ontology size, we can see that, for small and medium ontologies, both syntactic and se-746

mantic recall values are quite similar, but syntactic recall is notably lower than semantic747

one for large ontologies, which remarks that the information we keep in subontologies748

is semantically relevant. These results, along with the overlap achieved by our approach749

with UM-modules, show that our proposal is capable of adapting the knowledge with-750

out losing the most important parts, regarding the given signatures. Therefore, our751

definitions of semantic loss, based on the proportion between the number of inferences752

with respect to the ideal number of inferences, seem realistic.753

6.4. Detailed examples754

In this section we show two concrete cases of our prototype and architecture, using755

real ontologies for ontology visualisation and retrieval, respectively.756

Example 1 (Ontology visualisation). A final user is navigating through and ontology757

and want to visualise its relevant classes and their individuals. More precisely, 00104758

(3,573 logical axioms, 641KB file), one of the ontologies in the ORE 2015 dataset759

which includes information about geographic locations (#GEOREF), types of food com-760

modities (#FOODS-COMMODITY), and different languages (#LANGUAGE), among many761

others things. The user is located at class #FOODS-COMMODITY and wants to navigate762

through more specific classes. To do so, the ontology navigation would call a semantic763

reasoner to retrieve the subclasses of the original class. (Note that retrieving the sub-764

classes of class could be interesting in other scenarios, such as to refine the results of765

an instance retrieval query when there are too many results.) Unfortunately, semantic766

12We classified them as in the ORE 2013 Workshop, by counting the logical axioms in the original ontol-

ogy (that is, before doing any reasoning) (Gonçalves et al., 2013)
13Note that this signature might be quite larger than the seed one.

34

reasoning does not finish in a 300 seconds timeout: the ontology is too complex for767

his/her device (this actually happens using the environmental setup described in this768

section). Therefore, using a traditional reasoner, the user would receive an empty an-769

swer (reasoners do not retrieve subclasses as they compute them, but at the end of the770

process, where all of them have been computed).771

Instead, using our prototype (with #GEOREF, #LANGUAGE, and #FOODS-COMMODITY772

as signature), reasoning finishes within 10 seconds, so the final user could happily773

navigate to any of the subclasses of #FOODS-COMMODITY.774

In fact, if we query the subontology retrieved by our prototype to obtain the descen-775

dants and instances of the following concepts, we get the following results:776

• #GEOREF: 100% (265/265) of the instances (the original concept did not have777

subclasses).778

• #LANGUAGE: 100% (77/77) of the descendants and a 100% (263/263) of the in-779

stances.780

• #FOODS-COMMODITY: 100% (45/45) of the descendants (the original concept did781

not have instances).782

While the available knowledge is not complete, at least, we managed to provide783

the user with information about these concepts and an application could use it, maybe784

notifying the user that is not complete. For example, if we take SWEET Ontology785

Phenomena Atmosphere14, and we would like to retrieve all the phenomena that have786

a planetary scale (Phenomena and hasSpatialScale value PlanetaryScale),787

our approach it is able to retrieve a 3.81% (13/341) of the subclasses, being able to788

answer some concepts such as Climate or AtmosphericPhenomena. This is due the789

fact that the prediction is not so accurate in this case and reduces the amount of axioms790

too conservatively (we have checked that our approach, adding more axioms, increases791

the retrieval results). Note that while the percentages might seem low sometimes, the792

alternative was to raise directly an error and not providing any answer at all.793

1400412d8c-f97f-4e3d-b184-9a8133e74e61 phenWave.owl functional.owl in the dataset.

35

Example 2 (Knowledge Retrieval). In this example, a final user wants to know as794

much as possible about any pathology that can occur in the Liver. In this case, the795

application would be using GALEN-Full-Union ALCHOI(D) (37411 logical axioms,796

11MB file), which cannot be processed by HermiT15. For this ontology, our predic-797

tion module was timing out and we found out that calculating the metrics for such an798

ontology was quite expensive sometimes (they are quadratic in the size of the under-799

lying graph), but we opted to leave their optimisation as future work. This said, we800

directly reduced the size of the ontology to a 25% percent of the original logical ax-801

ioms16. With this setup, our approach, using Liver and hasLocation as signature, is802

able to extract a subontology where asking for hasLocation some Liver retrieves 9803

classified concepts, among which we can find Hepatitis, HepaticNecrosis and804

FattyLiver. Note that those are not directly related to Liver by hasLocation but by805

hasSpecificLocation, its subproperty. Extracting a subontology in this case is not806

only about performance, but a matter of enabling the application to work (approximat-807

ing the reasoning).808

In both real-world examples, the original ontologies could not be processed by a809

regular desktop computer. However, our prototype was able to compute a subontology810

so that the original problem can be partially solved, even when some inferences are811

missing.812

7. Conclusions and Future Work813

In this paper, we have discussed and developed strategies to adapt ontology reason-814

ing to the limitations of the device where such a reasoning will take place, particularly815

in the case of devices with heavily constrained resources, such as mobile devices or816

IoT infrastructure.817

15In fact, we have used different versions of HermiT and Pellet to handle it, but the original one could not

be processed.
16We tested it with 25% and 12.5% with exactly the same results of the reasoning, but higher materialisa-

tion times for 12.5%.

36

We have proposed an architecture to perform adaptive reasoning, taking into ac-818

count several criteria (such as the maximum running time or memory/battery limits).819

The key idea is to perform a knowledge extraction step that is suitable for the device,820

possibly after several iterations of the process. Reasoning will thus be executed against821

a subontology that can be processed on the device, although, in general, the reasoning822

results would be incomplete. We have discussed several issues to be taken into account823

during the process, such as the use of a signature (possibly including automatically824

discovered key concepts) as a starting point, or a preservation language as a strategy to825

decide which axioms to be kept. We have also discussed how to measure the impact826

of our approximations. In particular, we proposed a novel definition of semantic loss,827

adapted from the ontology alignment field.828

To illustrate some important steps of our architecture, we have implemented a pro-829

totype that is able to compute subontologies on desktop computers according to the830

predicted values of a single criterion (the reasoning time), which obviously depends on831

the device resources. The prototype illustrates the joint use of feature selection, strate-832

gies to compute a signature (KCE), and modularisation to give a possibly incomplete833

answer to the ontology materialisation problem with limited resources.834

We think that this paper clearly shows the potential of this line of research but also835

that there is a long road ahead, and there exist many directions for our future research.836

More experiments on mobile devices (or other devices with constrained resources) will837

also be necessary to properly evaluate the feasibility of the approach. In particular,838

although considering as many possible criteria as possible is desirable, first it has to be839

confirmed empirically that their costs can be successfully predicted.840

To do so, our prototype could be extended in several ways. Firstly, using more com-841

plex (but efficient) prediction strategies, possibly including features selected for mobile842

devices, and different machine learning techniques. Secondly, to compute the signature843

locally, we need a more efficient implementation of KCE or another algorithm. Thirdly,844

our prototype could be generalised to decide whether to perform local reasoning or not.845

Last but not least, we would like to test the pipeline on resource-constrained devices846

such as mobile phones. However, to do so, it is firstly necessary to develop models to847

predict the ontology reasoning time, which so far has only considered desktop comput-848

37

ers.849

Acknowledgements850

The work of C. Bobed, F. Bobillo, and E. Mena was supported by the I+D+i851

project PID2020-113903RB-I00 (funded by MCIN/AEI/10.13039/501100011033) and852

the project T42 23R (funded by Gobierno de Aragón). We also thank the anonymous853

reviewers for their helpful comments to improve the paper.854

References855

Allemang, D., Hendler, J., Gandon, F., 2020. Semantic Web for the Working Ontolo-856

gist, 3rd edition. Morgan & Claypool.857

Armas-Romero, A., Cuenca Grau, B., Horrocks, I., 2012. MORe: Modular combi-858

nation of OWL reasoners for ontology classification. In: Proceedings of the 11th859

International Semantic Web Conference (ISWC 2012). pp. 1–16.860

Armas-Romero, A., Kaminski, M., Cuenca Grau, B., Horrocks, I., 2016. Module ex-861

traction in expressive ontology languages via Datalog reasoning. Journal of Artificial862

Intelligence Research 55, 499–564.863

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. F., 2003.864

The Description Logic Handbook: Theory, Implementation, and Applications. Cam-865

bridge University Press.866

BioPortal, 2023. SNOMED CT. URL: http://bioportal.bioontology.org/867

ontologies/SNOMEDCT.868

Bobed, C., Bobillo, F., Mena, E., Pan, J. Z., 2017. On serializable incremental seman-869

tic reasoners. In: Proceedings of the 9th International Conference on Knowledge870

Capture (K-CAP 2017). ACM, pp. 1–4.871

Bobed, C., Yus, R., Bobillo, F., Mena, E., 2015. Semantic reasoning on mobile devices:872

Do androids dream of efficient reasoners? Journal of Web Semantics 35, 167–183.873

38

http://bioportal.bioontology.org/ontologies/SNOMEDCT
http://bioportal.bioontology.org/ontologies/SNOMEDCT
http://bioportal.bioontology.org/ontologies/SNOMEDCT

Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U., 2008. Modular reuse of ontolo-874

gies: Theory and practice. Journal of Artificial Intelligence Research 31, 273–318.875

Cuenca Grau, B., Jimenez-Ruiz, E., Kharlamov, E., Zheleznyakov, D., 2012. Ontology876

evolution under semantic constraints. In: Proceedings of the 13th International con-877

ference on Principles of Knowledge Representation and Reasoning (KR 2012). pp.878

137–147.879

Cuenca Grau, B., Parsia, B., Sirin, E., Kalyanpur, A., 2006. Modularity and web880

ontologies. In: Proceedings of the 10th International Conference on Principles of881

Knowledge Representation and Reasoning (KR 2006). pp. 198–209.882

Del Vescovo, C., Klinov, P., Parsia, B., Sattler, U., Schneider, T., Tsarkov, D., 2013.883

Empirical study of logic-based modules: Cheap is cheerful. In: Proceedings of the884

12th International Semantic Web Conference (ISWC 2013). Springer, pp. 84–100.885

Dudáš, M., Lohmann, S., Svátek, V., & Pavlov, D. (2018). Ontology visualization886

methods and tools: A survey of the state of the art. The Knowledge Engineering887

Review, 33, E10.888

Euzenat, J., 2007. Semantic precision and recall for ontology alignment evaluation.889

In: Proceedings of the 20th International Joint Conference on Artifical Intelligence890

(IJCAI 2007). pp. 348–353.891

Gatens, W., Konev, B., Wolter, F., 2013. Module extraction for acyclic ontologies.892

In: Proceedings of the 7th International Workshop on Modular Ontologies (WoMO893

2013). Vol. 1081 of CEUR Workshop Proceedings. pp. 49–60.894

Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z., 2014. HermiT: An OWL 2895

reasoner. Journal of Automated Reasoning 53 (3), 245–269.896

Gobin-Rahimbux, B., 2022. Evaluation metrics for ontology modules: Short report.897

In: Proceedings of the 2022 IEEE International Conference on Data Science and898

Information System (ICDSIS 2022). IEEE, pp. 1–6.899

39

Gonçalves, R. S., Bail, S., Jiménez-Ruiz, E., Matentzoglu, N., Parsia, B., Glimm,900

B., Kazakov, Y., 2013. OWL Reasoner Evaluation (ORE) workshop 2013 results:901

Short report. In: Proceedings of the 2nd International Workshop on OWL Reasoner902

Evaluation (ORE 2013). Vol. 1015. CEUR Workshop Proceedings, pp. 1–18.903

Guazzelli, A., Zeller, M., Lin, W.-C., Williams, G., et al., 2009. PMML: An open904

standard for sharing models. R Journal 1 (1), 60.905

Guclu, I., Bobed, C., Pan, J. Z., Kollingbaum, M. J., Li, Y., 2016a. How can reasoner906

performance of ABox intensive ontologies be predicted? In: Proceedings of the 6th907

Joint International Conference on Semantic Technology (JIST 2016). pp. 3–14.908

Guclu, I., Li, Y., Pan, J. Z., Kollingbaum, M. J., 2016b. Predicting energy consumption909

of ontology reasoning over mobile devices. In: Proceedings of the 15th International910

Semantic Web Conference (ISWC 2016). pp. 198–214.911

Horridge, M., Bechhofer, S., 2011. The OWL API: A Java API for OWL ontologies.912

Semantic web 2 (1), 11–21.913

Huitzil, I., Alegre, F., Bobillo, F., 2020. GimmeHop: A recommender system for mo-914

bile devices using ontology reasoners and fuzzy logic. Fuzzy Sets and Systems, 401,915

55–77.916

Huitzil, I., Straccia, U., Bobed, C., Mena, E., Bobillo, F., 2020. The serializable and917

incremental semantic reasoner fuzzyDL. In: Proceedings of the 29th IEEE Interna-918

tional Conference on Fuzzy Systems (FUZZ-IEEE 2020). IEEE Press, pp. 1–8.919

Hutter, F., Xu, L., Hoos, H. H., Leyton-Brown, K., 2014. Algorithm runtime prediction:920

Methods & evaluation. Artificial Intelligence 206, 79–111.921

Jiménez-Ruiz, E., Grau, B., Sattler, U., Schneider, T., Berlanga, R., 2008. Safe and922

economic re-use of ontologies: A logic-based methodology and tool support. In:923

Proceedings of the 5th European Semantic Web Conference (ESWC 2008). Springer,924

pp. 185–199.925

40

Kang, Y.-B., Li, Y.-F., Krishnaswamy, S., 2012. Predicting reasoning performance us-926

ing ontology metrics. In: Proceedings of the 11th International Semantic Web Con-927

ference (ISWC 2012). pp. 198–214.928

Kang, Y.-B., Pan, J. Z., Krishnaswamy, S., Sawangphol, W., Li, Y.-F., 2014. How929

long will it take? Accurate prediction of ontology reasoning performance. In: Pro-930

ceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI 2014). pp.931

80–86.932

Kazakov, Y., Krötzsch, M., Simančı́k, F., 2014. The incredible ELK. Journal of Auto-933

mated Reasoning 53, 1–61.934

Kerschke, P., Hoos, H. H., Neumann, F., Trautmann, H., 2019. Automated algorithm935

selection: Survey and perspectives. Evolutionary Computation 27(1), 3–45.936

Khamparia, A., Pandey, B., 11 2017. Comprehensive analysis of semantic web reason-937

ers and tools: a survey. Education and Information Technologies 22, 3121–3145.938

Kleemann, T., 2006. Towards mobile reasoning. In: Proceedings of the 2006 Interna-939

tional Workshop on Description Logics (DL 2006). pp. 231–238.940

Konev, B., Lutz, C., Walther, D., Wolter, F., 2013. Model-theoretic inseparability and941

modularity of description logic ontologies. Artificial Intelligence 203, 66–103.942

Mena, E., Illarramendi, A., 2001. Ontology-Based Query Processing for Global Infor-943

mation Systems. Kluwer Academic Publishers.944

Musen, M. A., 2015. The Protégé project: a look back and a look forward. AI Matters945

1 (4), 4–12.946

Noy, N. F., Musen, M. A., 2004. Specifying ontology views by traversal. In: Proceed-947

ings of the 3rd International Semantic Web Conference (ISWC 2004). pp. 713–725.948

Pan, J. Z., Bobed, C., Guclu, I., Bobillo, F., Kollingbaum, M. J., Mena, E., Li, Y.-F.,949

2018. Predicting reasoner performance on ABox intensive OWL 2 EL ontologies.950

International Journal on Semantic Web and Information Systems 14 (1), 1–30.951

41

Parsia, B., Matentzoglu, N., Gonçalves, R. S., Glimm, B., Steigmiller, A., 2016. The952

OWL reasoner evaluation (ORE) 2015 resources. In: Proceedings of the 15th Inter-953

national Semantic Web Conference ISWC 2016), Part II. Vol. 9982 of Lecture Notes954

in Computer Science. Springer, pp. 159–167.955

Pernisch, R., , D., Bernstein, A., 2021. Beware of the hierarchy An analysis of ontol-956

ogy evolution and the materialisation impact for biomedical ontologie. International957

Journal on Semantic Web and Journal of Web Semantics 70, 100658.958

Peroni, S., Motta, E., D’Aquin, M., 2008. Identifying key concepts in an ontology,959

through the integration of cognitive principles with statistical and topological mea-960

sures. In: Proceedings of the 3rd Asian Semantic Web Conference (ASWC 2008).961

pp. 242–256.962

Ribeiro, M. T., Singh, S., Guestrin, C., 2016. Why should i trust you?: Explaining963

the predictions of any classifier. In: Proceedings of the 22nd ACM International964

Conference on Knowledge Discovery and Data Mining (SIGKDD 2016). pp. 1135–965

1144.966

Ribeiro, M. T., Singh, S., Guestrin, C., 2018. Anchors: High-precision model-agnostic967

explanations. In: Proceedings of the 32nd Conference on Artificial Intelligence968

(AAAI 2018). pp. 1527–1535.969

Rogers, J., Roberts, A., Solomon, D., van der Haring, E. J., Wroe, C., Zanstra, P.970

E., Rector, A. L., 2001. GALEN Ten Years On: Tasks and Supporting Tools. In:971

Proceedings of the 10th World Congress on Medical Informatics (MEDINFO 2001).972

Vol. 84 of Studies in Health Technology and Informatics. IOS Press, pp. 256260.973

Ruta, M., Scioscia, F., Bilenchi, I., Gramegna, F., Loseto, G., Ieva, S., Pinto, A., 2022.974

A multiplatform reasoning engine for the semantic web of everything. Journal of975

Web Semantics 73, 100709.976

Ruta, M., Scioscia, F., Gramegna, F., Bilenchi, I., Sciascio, E. D., 2019. Mini-ME977

Swift: The first mobile OWL reasoner for ios. In: Proceedings of the 16th Extended978

42

Semantic Web Conference (ESWC 2019). Vol. 11503 of Lecture Notes in Computer979

Science. Springer, pp. 298–313.980

Sazonau, V., Sattler, U., Brown, G., 2014. Predicting performance of OWL reason-981

ers: Locally or globally? In: Proceedings of the 14th International Conference on982

Principles of Knowledge Representation and Reasoning (KR 2014). pp. 661–664.983

Schlicht, A., Stuckenschmidt, H., 2006. Towards structural criteria for ontology modu-984

larization. In: Proceedings of the 1st International Workshop on Modular Ontologies985

(WoMO 2006). Vol. 232 of CEUR Workshop Proceedings. pp. 85–97.986

Sirin, E., Parsia, B., Cuenca Grau, B., Kalyanpur, A., Katz, Y., 2014. Pellet: A practical987

OWL-DL reasoner. Journal of Web Semantics 5 (2), 51–53.988

Martin G. Skjæveland, M., G., Gjerver, A., Hansen, C. M., Klüwer J. W., Strand, M.989

R., Waaler, A., Overli, P. O., 2018, Semantic Material Master Data Management at990

Aibel. In: Proceedings of the ISWC 2018 Posters & Demonstrations, Industry and991

Blue Sky Ideas Tracks co-located with 17th International Semantic Web Conference992

(ISWC 2018). CEUR Workshop Proceedings 2180, CEUR-WS.org.993

Steller, L. A., Krishnaswamy, S., Gaber, M. M., 2009. A weighted approach to partial994

matching for mobile reasoning. In: Proceedings of the 8th International Semantic995

Web Conference (ISWC 2009). pp. 618–633.996

Stuckenschmidt, H., Klein, M., 2004. Structure-based partitioning of large concept hi-997

erarchies. In: Proceedings of the 3rd International Semantic Web Conference (ISWC998

2004). pp. 289–303.999

Thomas, E., Pan, J. Z., Ren, Y., 2010. TrOWL: Tractable OWL 2 reasoning infrastruc-1000

ture. In: Proceedings of the 7th Extended Semantic Web Conference (ESWC 2010).1001

Vol. 2. pp. 431–435.1002

Van Woensel, W., Abidi, S. S. R., 2019. Optimizing and benchmarking OWL2 RL for1003

semantic reasoning on mobile platforms. Semantic Web Journal 10, 637–663.1004

43

Yus, R., Mena, E., 2015. Emergency Management Using SHERLOCK. In: Proceed-1005

ings of the 13th Annual International Conference on Mobile Systems, Applications,1006

and Services (MobiSys 2015). ACM, pp. 495–495.1007

Zhang, H., Li, Y.-F., Tan, H. B. K., 2010. Measuring design complexity of semantic1008

web ontologies. Journal of Systems and Software 83, 803–814.1009

44

	Introduction
	Related Work
	Computing ontology subsets
	Adapting to resources
	Semantic loss
	Open issues

	Adaptive Reasoning
	Architecture of the Proposal
	Predicting Resources Consumption

	Instantiating the Architecture
	Design of the Solution
	A Prototype Implementation

	Measuring the Semantic Loss
	Evaluation
	Precision of the Resource Prediction
	Adjusting the Available Knowledge to the Resources
	Evaluation of the Semantic Loss
	Detailed examples

	Conclusions and Future Work

